Геометрія 11 класу
Поняття правильної піраміди, її висоти і радіусу описаного навколо неї прямого конуса. Особливості комбінацій геометричних тіл: твірної конуса, розміщення центра його основи та висоти. Властивості правильного трикутника і розрахунок об'єму тіла обертання.
Рубрика | Математика |
Вид | контрольная работа |
Язык | украинский |
Дата добавления | 07.07.2011 |
Размер файла | 454,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ТЕМАТИЧНА КОНТРОЛЬНА РОБОТА
Геометрія 11 класу
Завдання тематичної контрольної роботи № 4
1. Виконати зображення правильної n - кутної піраміди, вписаної в конус, якщо n = 3.
2. Сформулювати властивості для комбінації тіл, завданих в задачі 1:
а) розміщення центра основи конуса;
б) розміщення висоти конуса і піраміди;
в) твірної конуса.
3. Обчислити радіус основи конуса із умов задачі 1, якщо сторона основи піраміди дорівнює 6 см.
В кулю вписано конус, твірна якого дорівнює L і нахилена до площини основи під кутом б.
Знайти площу поверхні кулі.
4. Рівнобедрений трикутник з кутом 300 при основі і бічною стороною 10 см обертається навколо основи.
Знайти об'єм тіла обертання.
Задача 1
Виконати зображення правильної n - кутної піраміди, вписаної в конус, якщо n = 3.
Розв'язання:
1. Визначення [2] - правильною пірамідою називається пряма піраміда, в основі якої лежить правильний трикутник, у якого всі сторони рівні і, відповідно, всі внутрішні кути дорівнюють 600 . Висота правильної піраміди - це перпендикуляр з вершини О в центр основи, який лежить на пересіченні висот правильного трикутника в основі.
2. Відповідно, відрізки AD =CD =DB = R - дорівнюють радіусу прямого конуса, описаного навколо правильної піраміди (рис.1).
Рис.1. Побудована правильна 3-кутна піраміда, вписана в прямий конус
Задача 2
Сформулювати властивості для комбінації тіл, завданих в задачі 1:
а) розміщення центра основи конуса;
б) розміщення висоти конуса і піраміди;
в) твірної конуса.
Розв'язання:
Для правильної піраміди, вписаної в прямий конус за умовами задачі 1 (див.рис.1), виконуються наступні властивості комбінації двох геометричних тіл:
1. Центр основи конуса лежить в точці D пересічення висот (медіан та бісектрис) правильного трикутника в основі правильної піраміди;
2. Висота правильної піраміди та висота прямого конуса співпадають та є перпендикуляром OD з вершини піраміди та конуса (точки О) в центр основи конуса (центр основи правильної піраміди) - точку D.
3. Твірна конуса NO та ребро правильної піраміди АО - співпадають.
Задача 3
Обчислити радіус основи конуса із умов задачі 1, якщо сторона основи піраміди дорівнює 6 см.
Розв`язання:
Рис.1. Побудована правильна 3-кутна піраміда, вписана в прямий конус
1. Згідно основних властивостей правильного трикутника ABC в основі піраміди (див.рис.1):
- Висоти, медіани та бісектриси правильного трикутника перехрещуються в єдиній точці D;
- Висота СК є одночасно медіаною, тобто ділить сторону АВ на дві рівні частини АК =КВ = 6 см /2 = 3 см;
- Висота AD є одночасно бісектрисою кута CAB = 600, таким чином в ADK кут DAK = 600/2 =300;
2. Таким чином, за першим способом побудови радіус основи описаного прямого конуса R = AD в трикутнику ADK та розраховується як:
1. За другим підходом, згідно властивостей трикутника, описаного колом радіуса R[1] - у будь-якому трикутнику сторона дорівнює добутку діаметра описаного кола й синуса протилежного кута.
Тобто:
АВ = 2*AD*sin(ACB)
Де кут ACB в основі правильної піраміди дорівнює 1800/3=600
І, відповідно, радіус R основи конуса дорівнює:
Задача 4
В кулю вписано конус, твірна якого дорівнює L і нахилена до площини основи під кутом б.
Знайти площу поверхні кулі.
Розв'язання:
1. Площа поверхні кулі розраховується за формулою [3]:
де r - радіус кулі, який на рис.2 дорівнює
r = XO =OX1 =OY=OY1
Таким чином, необхідно знайти вираз для розрахунку діаметру кулі за одним із перелічених відрізків від центру шару О (рис.2.1 - 3 варіанти вписаного в кулю конуса).
піраміда конус геометричний трикутник
Рис.2.1. Вихідні умови задачі (конус вписаний в кулю)
2. Для комбінації геометричних тіл - "Конус, вписаний у кулю" [4]:
Вершина конуса лежить на сфері (див. рис.2.2 зліва). Основа конуса лежить на сфері. Комбінація є симетричною відносно площини, що містить вісь конуса. У такому перерізі дістанемо трикутник, вписаний у коло (рис. 2.2 справа).
Рис.2.2. Перехід від об'ємної до плоскої задачі
Трикутник осьового перерізу конусу - рівнобедрений. Бічні сторони -- твірні конуса, коло -- велике коло описаної кулі. Отже, радіус кулі дорівнює радіусу кола, описаного навколо осьового перерізу конуса.
3. Враховуючи властивостей трикутника, описаного колом радіуса R[3] - у будь-якому трикутнику сторона дорівнює добутку діаметра описаного кола й синуса протилежного кута.
Тобто (рис.2.1):
Y1В = XX1*sin(Y1AB)
або
L = 2*rкулі*sin(б)
Відповідно, площа поверхні кулі розраховується за виразом:
Тобто отримана формула описує всі 3 випадки на рис.2.1, оскільки при зростанні/зменшенні L відповідно зростає/зменшується sin (б).
Задача 5
Рівнобедрений трикутник з кутом 300 при основі і бічною стороною 10 см обертається навколо основи.
Знайти об'єм тіла обертання.
Розв'язання:
1. При обертанні рівнобедреного трикутника ABC навколо основи AB (тобто осі О - О1) , утворюється подвійний конус з спільною основою радіусом R = CK - висоті рівнобедреного трикутника (рис.3). Твірна конусу АС дорівнює твірній другого конусу СВ, як бічні сторонни рівнобедреного трикутника.
Рис.3. Побудова подвійного конусу, який створюється в просторі при обертанні рівнобедреного трикутника навколо основи
2. Таким чином об'єм утвореної составної геометричної фігури дорівнює двом об'ємам прямого конусу з твірною АС = 10 см та радіусом основи R =CК.
Висота СК до основи АВ рівнобедреного трикутника ? ABC розраховується за формулою:
3. Об'єм конуса розраховується за формулою [3]:
де R - радіус основи конуса;
Н - висота прямого конуса, яка згідно рис.3 дорівнює:
4. Відповідно об'єм фігури обертання рівнобедреного трикутника (рис.3) буде дорівнювати двум об'ємам конусу:
Список використаної літератури
1. Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 10-11 классы. - М.:Издательство: Просвещение, 2008. - 255 с.
2. Бевз Г.П., Владімірова Н.Г. Геометрія 10 клас - К.: Генеза, 2010. - 232с.
3. Біляніна О.Я., Білянін Г.І., Швець В.О. Геометрія 10 клас. Академічний рівень - К.: Генеза, 2010. - 256 с.
4. Бродський Я. Геометрія. Підручник. 10-11 клас - Навчальна книга Богдан, 2003 - 288 с.
5. Тадеєв В. Геометрія. Підручник. 10 клас - Навчальна книга Богдан, 2003. - 384 с.
6. Тадеєв В. Геометрія. Основи стереометрії. Підручник. 11 клас - Навчальна книга Богдан, 2004. - 480 с.
Размещено на Allbest.ru
Подобные документы
Головні властивості прямого циліндра, визначення площі його бічної поверхні і радіусу основи. Розрахунок осьового перерізу прямого конуса та об'єму кулі. Площа поверхні тіла обертання рівнобедреного трикутника навколо прямої, що містить його основу.
контрольная работа [302,8 K], добавлен 07.07.2011Розрахунок площі осьового перерізу конуса як площі трикутника і радіусу основи і висоти циліндра як діаметра кола його основи. Обчислення кутів при гіпотенузі та катетів в рівнобедреному прямокутному трикутнику. Визначення центру кулі і площі її перерізу.
контрольная работа [302,0 K], добавлен 07.07.2011Пошук об’єму призми, циліндра та конуса, діаметру кулі. Розрахунок площі прямокутника основи призми по одній стороні та діагоналі, площі трикутника в основі піраміди за формулою Герона. Радіус основи циліндра та одночасно - катет прямокутного трикутника.
контрольная работа [502,7 K], добавлен 07.07.2011Понятие и историческая справка о конусе, характеристика его элементов. Особенности образования конуса и виды конических сечений. Построение сферы Данделена и ее параметры. Применение свойств конических сечений. Расчеты площадей поверхностей конуса.
презентация [499,0 K], добавлен 08.04.2012Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.
презентация [137,9 K], добавлен 12.12.2013Наочне представлення про об'єкт та його зображення в тривимірному просторі. Порядок тривимірний зміни масштабу фігури, її зсуву та обертання. Особливості відображення елементів у просторі, просторовий перенос та тривимірне обертання навколо довільної осі.
лабораторная работа [701,4 K], добавлен 19.03.2011Розв’язання системи рівнянь методом Крамера, методом оберненої матриці та методом Гаусса. Розрахунок довжини ребра, кута між ребрами, рівняння висоти, рівняння площини грані і кута між ребром та гранню. Дослідження функції та побудува її графіку.
контрольная работа [397,0 K], добавлен 30.10.2011Поняття і сутність нарисної геометрії. Геометричні фігури як формоутворюючі елементи простору. Розв'язання метричних задач шляхом заміни площин проекцій. Плоскопаралельне переміщення та обертання навколо ліній рівня. Косокутне допоміжне проектування.
контрольная работа [324,9 K], добавлен 03.02.2009Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.
статья [6,1 K], добавлен 22.06.2008Призначення пірамід у Давньому Єгипті, їх таємниця та особливості будівництва. Піраміда Хеопса як одне з семи чудес світу. Роль піраміди як стабілізатора параметрів у русі планети. Основні розрахункові формули та визначення стосовно піраміди в геометрії.
презентация [3,5 M], добавлен 28.07.2010