Теория вероятностей на уроках математики

Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 22.01.2009
Размер файла 88,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основное понятие, с которым связан весь курс теории вероятностей - это понятие опыта (или испытания). Но ему не дается четкое математическое определение, а вводится на интуитивном уровне.

Материал в теме изложен дедуктивно, если вводимым понятиям даются точные математические определения. Можно построить несколько логических цепочек определений:

1. По количеству благоприятных исходов из возможных, относительно одного события.

Событие

достоверное невозможное случайное

2. По количеству благоприятных исходов, относительно нескольких событий:

События

несовместные

противоположные

независимые

3. операции над событиями

объединение разность событий

событий пересечение

событий следствие

событий

Перечисленные понятия вводятся описательно, на каждое из них приводится пример.

В темы сформулированы и доказаны следующие утверждения:

1. Если события А и В несовместны, то Р(АUВ) =P(A) +P(B).

В основе доказательства лежит подсчет всевозможных исходов события А и В и определения объединения событий.

2. Если события А1, А2,... ... Аn попарно несовместны, то вероятность объединения этих событий равна сумме их вероятностей:

Р(А1UA2U... . UAn) =P(A1) +P(A2) +... +P(An)

Для доказательства применяется определение несовместных событий и утверждение 1.

3. Для любого события А имеем:

Р(А) =1-Р(А).

Для доказательства исполняются факты: AUA - есть достоверное событие (И) и Р(И) =1. А?А - невозможное событие (?) и утверждение 1.

4. Для любых двух событий справедливо равенство Р(АUВ) =P(A) +P(B) - Р(А?В)

Идея доказательства состоит из:

· разложения событий А и В на компоненты;

· нахождение объединения события А и события В;

· нахождение вероятности объединения событий А и В;

· нахождение суммы вероятности события А и события В.

5. пусть вероятностное пространство И представлено в виде объединения попарно несовместных событий Х1,,……, Хn: И=Х1UX2U... . UХn, где Xi?Xj=? при i?j. Тогда для любого события А верно равенство: Р(А) =Р(Х1) Р(А/Х1) +…+Р(Хn) P(A/Xn).

Для доказательства находится пересечение события А и вероятностного пространства И. пользуясь законом дистрибутивности операции пересечения событий, теоремой сложения вероятностей и условием, что Xi?Xj-невозможное событие, получается, что событие А является объединением попарно несовместных событий А?Х1,…А?Хn. Находится вероятность Р(А) и применяется формула условной вероятности.

6. Пусть вероятность события А равна Р, и пусть Рmn-вероятность того, что в серии из n независимых испытаний это событие произойдет m раз. Тогда справедлива формула Бернулли Pmn=Cn в степени m* p в степени m * q в степени n-m.

Идея доказательства: подсчет благоприятных серий испытаний, нахождение вероятности каждой из них и использование условия, что любые две различные серии несовместны.

Теория вероятности рассматривается в учебниках Ю.М. Колягина и других "Алгебра и начало анализа 11" для общеобразовательных классов и А.Л. Вершера, А.П. Харпа "Математика 11" для учащихся гуманитарного профиля.

Представленные в учебном пособии задачи считаем возможным квалифицировать следующим образом: (Основа классификации - теоретические сведения основ теории вероятностей).

Вычисление вероятности как относительной частоты (частости) появления события (NN 493-499)

Определение множества исходов испытания (NN 499-508)

вычисление вероятности по классическому определению вероятности:

а) число исходов испытания определяется методом "перебора" (NN 516-521)

б) число исходов испытания определяется с применением формул комбинаторики (NN 522-548)

4. Алгебра событий (NN 533-548)

5. Вычисление вероятности по теоремам сложения вероятностей (NN 549-553)

6. Вычисление условной вероятности (NN 565-579).

§3. Методические особенности изучения основ теории вероятностей в классах с углубленным изучением математике

П.1. Виды событий

Изучение теории вероятностей начинается с введения понятий событий: достоверных, невозможных и случайных. Это можно сделать следующим образом: в жизни вы часто слышали или употребляли в разговоре следующие фразы: "Важное событие", "Вот это событие", и т.д. А что же такое событие? Как вы понимаете это слово? Приведите примеры событий. После этого учитель может подвести итог, введя определенные события (это исход наблюдения или опыта).

Рассмотрим следующие события:

1) при понижении температуры до 90° вода превращается в лед;

2) при понижении температуры вода закипает;

3) при бросании монеты выпал герб.

Охарактеризуем эти события: насколько достоверно каждое из них? Вероятно ли то, что они утверждают? Первое верно, т. к вода обязательно замерзнет, если понизить температуру, поэтому это событие называется достоверным. Второе никогда не произойдет, поэтому оно называется невозможным. К какому же виду событий следует отнести третье? Всегда ли оно имеет место? Нет! Может случится, что выпадет решка и сто выпадет герб. Поэтому это событие называется случайным. Вводится определение случайного события (это такой исход наблюдения или эксперимента, который может произойти, а может не произойти).

После беседы учащимся целесообразно предложить устную работу. Ее содержание может быть следующим:

1. Определить вид следующих событий.

При нагревании проволоки ее длина увеличилась;

При бросании игральной кости выпало 4очка;

При бросании монеты выпала решка;

При осмотре почтового найдены 3 письма;

При бросании игральной кости количество выпавших очков есть натуральное число;

При стрельбе по мишени стрелок дважды попал в цель.

2. Являются ли следующие события невозможными?

Получение всеми учениками вашего класса отличных оценок за очередную контрольную работу по математике;

Замена всех завтрашних уроков просмотром приключенческого фильма.

3. Приведите примеры событий, которые вы считаете:

Достоверными;

Невозможными

Случайными

Целесообразно подготовить сообщения учеников на темы:

1) Теория вероятности как наука.

2) Применение теории вероятности.

Цель: показать учащимся обширность областей применения теории вероятностей, ее значимость в науке и в жизни.

Для ознакомления учащихся с понятием частоты появления какого-либо события в длинной серии испытаний рекомендуется выполнение ряда упражнений, которые требуют ответа на вопрос: "Какое из событий вероятней? ".

Учителю необходимо пояснить учащимся, что сравнивать события следует по их вероятностям.

Например. Что вероятнее -появление герба при бросании монеты или появления нечетного числа очков при бросании игральной кости?

Решение.

Вероятность появления герба при бросании монеты равна 1\2, а появление нечетного числа очков при бросании игральной кости равна 3\6 или 1\2.

Следовательно, эти события равновероятные.

После изучения данного материала, ученики должны уметь:

Приводить примеры достоверных, невозможных и случайных событий;

Уметь классифицировать события на достоверные, невозможные и случайные;

Из нескольких событий выделять наиболее вероятное, объяснять свой выбор.

П.2. Вероятностное пространство

При введении понятия "вероятностное пространство" ученики сталкиваются с понятием опыта или испытания. Но этому понятию нельзя дать математическое определение. Ученики должны понимать, что значат слова: "подбросим монету и посмотрим упала она вверх гербом и цифрой" или "зажжем свечу и посмотрим, когда она сгорит". Ученикам следует объяснить, что существенно лишь то, что данное испытание может иметь различные исходы. Для простоты удобно рассматривать лишь случаи, когда множество исходов конечно.

Для того, чтобы ученики убедились в том, что действительно при испытании возможны различные исходы, т.е. множество исходов, проведем эксперимент.

Для эксперимента потребуется игральная кость и свободный стол, на котором будет производиться испытание.

Один из учеников несколько раз подбрасывает игральную кость и каждый раз на доске записывает результат.

В конце испытания полезно подвести итог о возможных множествах исходов:

1. {A1,A2,A3,A4,A5,A6}, Аk -выпадение k очков;

2. {В0, В1}, В0-выпадение четного числа очков, В1-выпадение нечетного числа очков;

3. {C1,C2}, С1-выпадение очков меньше или равно 4, С2-выпадение очков больше или равно 5.

Учителю рекомендуется предложить еще несколько возможных множеств исходов, например, множество {A1,A2}, где Аk выпадение k очков, или множество {В1, С2}, где В1-выпадение нечетного числа очков, С2 - выпадение очков больше или равно 5 и предложить учащимся выяснить: являются ли эти множества исходов множествами исходов данного опыта!

Для того, чтобы можно было выразить вероятность каждого исхода числом, потребуется выбрать "единицу измерения". Можно сказать ученикам, что математики договорились, что сумма вероятностей всех исходов равна 1.

С ребятами рекомендуется обратиться к проведенному эксперименту и выяснить, какой из исходов имеет возможность происходить чаще других.

Выяснив, что ни один из исходов не отвечает этому требованию, учитель делает вывод, что все элементарные исходы равно возможны, а т. к. их сумма равна 1, то вероятность каждой из них равна 1\n, где n-число исходов.

Следует пояснить учащимся, что этот подход называется классической схемой теории вероятностей.

Полезно выполнить следующие упражнение:

Вероятностное пространство задано следующей таблицей:

Исход

Х1

Х2

Х3

Х4

Вероятность

0,2

0,1

0,5

0,4

Во сколько раз исход Х3 вероятнее исхода Х2. какие исходы равно вероятностны?

Это задание предложено с целью формирования у учащихся умений выявлять вероятностное пространство, а так же умений выделять равновероятностные исходы, сравнивая их.

Необходимо пояснить учащимся, что существует несколько подходов к определению вероятности.

1. Классическое определение вероятности.

Урок можно провести в форме лекции-диалога [Гл.1§5] т. к. это определение фиксирует долю благоприятных для данного события исходов среди всех равновозможных, необходимо научить определять число всех равновозможных исходов. После определения вероятности рекомендуется решить несколько задач на непосредственное нахождение вероятностей событий согласно классическому определению, тем саамы выявить алгоритм решения таких задач.

Алгоритм:

1) обозначить событие (Н1)

2) сосчитать число всех исходов (n)

3) сосчитать число исходов благоприятствующих данному событию m

4) найти отношение благоприятствующих исходов к числу всех исходов

На отработку алгоритма предлагается решить следующие задачи.

Задача 1. В урне 3красных шара, 2 белых и 4 синих. Какова вероятность того, что с первого раза вынут красный шар?

Задача 2. При броске игральной кости вычислить вероятность следующих событий

"выпало 3 очка"

"выпало 6 очков"

"выпало четное число очков"

"выпало простое число очков"

"число выпавших очков кратно 3".

Задача 3. Набирая номер телефона, абонент забыл одну цифру и набрал ее на удачу. Найти вероятность того, что набрана нужная цифра.

Задача 4. Бросили две монеты. Какова вероятность того, что на одной монете выпал герб, а на другой цифра?

Для запоминания учащимися формулы Р(Н) =m\n, полезно придать ей наглядную иллюстрацию. (рис.15)

Р(Н) =

63

Рис.15.

Н - случайное событие, n-число всех равновозможных элементарных событий, m-число равновозможных элементарных событий, благоприятствующих событию Н.

Затем следует перейти к изучению свойств вероятности и совместно с учащимися установить, что:

1) если А некоторое событие, то 0?Р(А) ?1;

2) 0(И) =1, где И-достоверное событие;

3) 0(v) =0, где v-невозможное событие.

2. Статистическое определение вероятности.

Главное, чтобы учащиеся поняли, что при статистическом определении в качестве вероятности события принимают его относительную частоту.

Ученикам следует пояснить, что существует еще геометрическое определение вероятности и существует аксиоматическое определение вероятности события.

П.3. Теоремы сложения

Прежде чем приступать к формулированию и доказательству этих теорем, необходимо вспомнить определение суммы и произведения событий; совместных и несовместных событий.

Вначале на примере задачи следует дать учащимся представление о формулировке теоремы 1.

Задача 1. экзаменационные работы абитуриентов зашифрованы целыми числами от 1 до 90 включительно. Какова вероятность того, что номер наудачу взятой работы кратен 10 или 11?

Решение.

Пусть событие А -номер работы кратный10. событие В-номер работы кратный 11, тогда событие А+В состоит в том, что номер работы кратен 10 или 11. Легко видеть это Р(А) =9\90 (1), и Р(В) =8\90 (2), а т. к. число исходов благоприятствующих событию А+В равно 17 и, следовательно Р(А+В) =17\90 (3).

Сравнивая (3) с (1) и (2), видим что вероятность события А+В и сумма вероятностей событий А и В равны между собой, т. е Р(А+В) =Р(А) +Р(В)

Формулировка теоремы достаточно проста, поэтому учащиеся самостоятельно и могут предложить.

Решение задачи может быть использована для выявления способа доказательства сформулированной теоремы. Достаточно обратить внимание на основные моменты решения.

1) подсчет числа всех исходов испытания

2) нахождение числа исходов испытания, благоприятствующих появлению событий А; В;

3) отыскание числа исходов испытания, благоприятствующих появлению события А+В.

Полная аналогия доказательства теоремы с решением задачи позволяет учащимся самостоятельно ее доказать. Можно предложить специальную запись доказательства в виде таблицы, клетки которой заполняются учащимися.

n - число всех исходов испытания.

Р(А+В) =Р(А) +Р(В)

События

Число исходов испытания, благоприятствующих появлению события

Вероятность события

А

m

m\n

B

K

k\n

A+B

m+k

m+k\n

Важно, чтобы ученики видели необходимость обоснования шагов доказательства и умели это делать, ссылаясь на определение несовместных событий и классическое определение вероятности.

После доказательства теоремы целесообразно дать геометрическую интерпретацию выведенной формулы и пояснить: m,n,k - величины площадей нарисованных фигур.

В тетрадях учащимся рекомендуется зафиксировать правило, которое выражается последним равенством и может быть распространено на любое конечное число попарно несовместных событий: вероятность объединение попарно несовместных событий равна сумме вероятностей этих событий.

+

Для закрепления этой формулы ученикам предлагается решить ряд задач.

Задача 2. в лотерее выпущено 10000билетов и установлено: 10 выигрышей по 200рублей, 100выигрышей по 100рублей, 500-по 25рублей и 1000 выигрышей по 5рублей. Гражданин купил один билет. Какова вероятность того, что он выиграет не меньше 25рублей?

Решение задачи предполагается учащимися оформить в таблицу, с целью формирования навыка решать задачи по алгоритму.

Алгоритм

Конкретное соответствующие задание заданному алгоритму

Ввести обозначение для заданных величин

А-выигрыш не менее 25рублей

А1-выигрыш равен 25рублям

А2-выигрыш равен 100рублям

А3-выигрыш равен 200рублям

Подобрать формулу

Т. к. куплен один билет, то А+А1UA2UA3

Где события А1, А2, А3 попарно несовместимы, поэтому

Р(А) =Р(А1UA2UA3) =P(A1) +P(A2) +P(A3)

P(A1) =0.05; P(A2) =0.01; P(A3) =0.001

P(A) =0.05+0.01+0.001=0.061

Ответ

0,061

С целью выявления разнообразных способов решение задач на применение теоремы сложения вероятностей событий предлагаем рассмотреть следующие задачи:

Задача 3. Бросают две монеты. Чему равна вероятность появления хотя бы одного герба?

Решая эту задачу по известной схеме учащиеся приходят к выводу, что формула Р(АUB) =P(A) +P(B) не применима, т. к. события в этом испытании совместны.

Для решения сложившийся ситуации учителю рекомендуется предложить учащимся избрать другой путь решения, а именно:

1) обозначить событие с-"выпадение герба не состоялось"

2) найти вероятность этого события Р(С) =i

3) CUC-достоверное событие

4) Р(И) +Р(CUC) =P(C) +P(C) =1-по теореме 1.

5) Р(С) =1-Р(С) =1-1\4=3\4.

Таким образом, учащиеся с помощью учителя устанавливают связь между вероятностями противоположных событий: сумма вероятности двух противоположных событий равна единице.

Доказательство в общем виде учащимся предлагается выполнить самостоятельно, использовать для этого решение задачи.

С целью формирования умения решать задачи с помощью доказанной формулы предлагается решить задачу.

Задача 4. стрелок трижды стреляет по мишени. Вероятность попадания первого выстрела равна 0,4; второго 0,5; третьего 0,7. Какова вероятность того, что произошло хотя бы одно попадание.

Изучение теории о вероятности объединения совместных событий целесообразно провести следующим образом.

Пусть m-число равновозможных элементарных событий, благоприятствующие событию В. Среди m+k событий содержится в таких, которые благоприятствуют и событию А, и событию В. Если n-общее число равновозможных элементарных событий, то учащиеся без труда по классическому определению вероятности найдут:

Р(А) =m\n, P(B) =k\n, P(A?B) =L\n.

Ученикам необходимо пояснить, что запись AUB означает: "произойдет или событие А, или событие В, или и то и другое вместе" и что такому событию благоприятствуют (m+k-L) поэтому P(AUB) =m+k-L\n=m\n+k\n-L\n Подставляя значения получим:

P(AUB) =P(A) +P(B) - P(A?B)

Школьники должны понять, что эта формула представляет собой обобщение формулы Р(AUB) =P(A) +P(B)

Зафиксировав доказательство теоремы в тетрадь целесообразно дать геометрическую интерпретацию полученной формулы.

Р(AUB) =

Где m,k,L,n - величины площадей изображенных фигур.

Вернемся к задаче 3 и решим ее, пользуясь теоремой о вероятности объединения совместных событий.

Будем продолжать работать по алгоритму.

Алгоритм

Конкретное соответствие задания заданному алгоритму

Ввести обозначения для заданных величин

А-появление герба при подбрасывании монеты;

В-появление герба при подбрасывании второй монеты. Найти С=AUB

Подобрать формулу

Т. к. АиВ - совместные события, то Р(С) =Р(AUB) =P(A) +P(B) - P(A ?B)

P(A) =1\2,P(B) =1\2,P(A?B) =1\4

P(C) =1\2+1\2-1\4=3\4

Ответ

3\4

Для того, чтобы показать, что доказанная теорема справедлива не только для двух совместных событий можно предложить следующие задание.

Задача 5. А, В, С-совместные события. Доказать Р(АUBUC) =P(A) - P(B) - P(C) - P(A?B) - P(A?C) - P(B?C) +P(A?B?C)

Это задание способствует формированию умений учащихся доказывать вероятностные формулы.

Предлагаем систему задач, основной функцией которой является иллюстрация и закрепление положений теорий (теория о сумме вероятностей совместных событий).

I. (на применении теоремы о вероятности суммы не совместных событий).

1. в урне 30шаров: 10красных, 5синих, 15белых. найти вероятность появления цветного шара.

2. Стрелок стрелял по мишени, разделенной на три области. Вероятность попадания в первую область равна 0,45, во вторую 0,25. найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую.

3. Консультационный пункт института получает пакеты С контрольными работами из городов А, В, С. Вероятность получения пакета из города А 0,7; из города В 0,2. найти вероятность того, сто очередной пакет будет получен из города С.

II. (на применение теоремы о вероятности противоположного события)

1. вероятность того, что день будет дождливый р равна 0,7. найти вероятность того, что день будет ясным.

2. в денежно-вещевой лотереи на каждые 10 000 билетов разыгрываются 150вещевых и 50денежных выигрышей. Чему равна вероятность выигрыша, безразлично денежного или вещевого, для владельца одного лотерейного билета?

3. берется на удачу трехзначное натуральное число от 100 до 999. какова вероятность того, что хотя бы две его цифры совпадают?

III. (на применение теоремы о вероятности суммы событий, которые могут быть совместными)

1. вероятность попадания в цель при стрельбе первого и второго орудий соответственно равны: р1=0,7; р2=0,8. Найти вероятность попадания при одном залпе (из обеих орудий) двух орудий.

2. подбрасываются две монеты. Какова вероятность выпадения хотя бы одного герба?

После изучения теорем о вероятности суммы событий учащиеся должны уметь: вычислять вероятность случайного события, используя правила вычисления вероятностей одних событий по известным вероятностям других событий, с ним связанных.

Для этого удобно пользоваться алгоритмом, который ученикам рекомендуется зафиксировать в тетрадь:

1. ввести обозначение для всех количеств. Присвоить имена событиям, участвующим в задании. Те вероятности, которые указаны в задаче явно, сразу выписать (если доля задана в процентах - заданные проценты поделить на 100).

2. те вероятности, которые заданы не в явном виде сосчитать и выписать.

Указание к шагу.

Считать вероятности по следующим правилам.

А) если задано общее число исходов n и число благоприятных событию А исходов m (или их можно сосчитать), то Р(А) =m\n;

Б) если все возможные исходы можно изобразить с помощью геометрической фигуры (отрезок, круг, полоса - полное пространство событий Щ), то нарисовать ее, а внутри нее нарисовать фигуру, соответствующую исходам, благоприятным событию А, вычислить площади фигур А и Щ, сосчитать отношение этих фигур P(А) =S(A) \S(Щ);

В) если по заданным в задаче вероятностям надо сосчитать вероятность еще одного события (С), то надо выписывать формулу связи этого события с теми событиями, вероятность которых известны. (А, В,…). После этого воспользоваться формулами: С=А=>Р(С) =1-Р(А);

С=А+В=>Р(С) =Р(А) +Р(В) - Р(А*В).

Для закрепления этого алгоритма в системе задач, следует предусмотреть задачи, связанные с геометрическим определением вероятности. Примером такой задачи может быть следующая.

Задача 6. в квадрате находится другой квадрат, сторона которого вдвое меньше. Найти вероятность того, что точка брошенная в квадрат так, что любое ее положение в квадрате - равновозможное, окажется внутри второго квадрата.

Согласно алгоритму, учащийся должен выполнить рисунок и заполнить таблицу, подобрав к алгоритму конкретное содержание.

А

Алгоритм

Конкретное соответствие задания заданному алгоритму

Ввести обозначения для заданных величин

а-длинна стороны квадрата;

а/2-длина стороны второго квадрата;

S(Щ) - площадь квадрата;

S(A) - площадь внутреннего квадрата;

А-точка попала во внутренний квадрат;

S(Щ) =а І, S(A) =aІ\4, найти Р(А) ?

Подобрать формулу

Р(А) =S(A) \ S(Щ) = aІ\4\ aІ=1\4=0.25

Ответ

0,25

На контрольно-коррекционном этапе изучения теорем о вероятности суммы независимых событий считаем возможным предложить самостоятельную работу, с целью проверки умения учащихся применять изученные формулы в конкретных ситуациях, атак же для выявления пробелов в знаниях.

Перед самостоятельной работой целесообразно провести устную работу с целью повторения правила сложения вероятностей событий и основных формул.

Обсуждение следует сориентировать:

· на выяснение правила сложения вероятности несовместных событий;

· на определение несовместных событий, с приведением учениками достаточного числа примеров;

· на выяснение обобщенного правила сложения вероятностей;

· на выяснение символической записи правила сложения вероятностей 2,3-несовместных (совместных) событий;

· на выяснение формулы выражающей связь между вероятностями противоположных событий;

Содержание самостоятельной работы может быть следующим:

· на военных учениях летчик получил задание "уничтожить" 3рядом расположенных склада боеприпасов противника. На борту самолета одна бомба. Вероятность попадания в первый склад примерно равна 0,01, во второй 0,008, в третий 0,025.

Любое попадание в результате детонации вызывает взрыв и остальных складов. Какова вероятность того, что склады противника будут уничтожены?

подбрасывается игральная кость. Чему равна вероятность того, что на гранях выпадет 4и6 очков.

найти вероятность того, что брошенная в квадрат точка окажется внутри вписанного в этот квадрат круга, если ее любое положение в квадрате является равновозможным.

бросают две монеты. Какова вероятность выпадения хотя бы одной цифры.

Цель задания 3: выявить способности учащихся решать задачи, в которых события описываются с помощью геометрических фигур.

Цель задания 4: выявление пробелов в знании формулы сложения двух несовместных событий.

П.4. Условная вероятность. Формула умножения

Изучению формулы умножения следует предварить беседу о зависимости одного события от другого, и об условной вероятности. Это можно осуществить на опыте: из ящика в котором 5белых и 3черных шара, наугад вынимают последовательно один за другим два шара. Какова вероятность вынуть второй шар белый?

Проводя опыт, учащиеся сталкиваются с двумя ситуациями: когда вероятность вынуть второй шар белый зависит от того, вынут в первый раз шар белый или черный.

Следует пояснить учащимся, что в таком случае будем говорить, что одно событие зависит от другого, а вероятность появления зависимого события условная.

Пусть событие В зависит от события А. Уловную вероятность появления события В, если событие А произошло, будем обозначать Р(В/А). и в дальнейшем встречаясь с такой записью, учащиеся без труда должны узнавать и понимать, что речь идет о вероятности события В, если произошло событие А.

При выведении формулы умножения вероятностей можно воспользоваться рисунком.

Событию А благоприятствуют m событий, событию В благоприятствуют k событий, событию А?В благоприятствуют r событий.

Если событие А произошло, то событию В благоприятствуют r и только r событий Ai, благоприятствующих А?В.

Р(В/А) =r\m=r\n ч m\n=P(A?B) \P(A);

По аналогии формулу Р(А/В) учащиеся могут ввести самостоятельно

Р(А/В) =r\k=r\n ч k\n=P(A?B) \P(B)

На основании этих формул делаем вывод: P(A?B) =Р(В) *Р(А/В) =Р(А) *Р(В/А).

Учащимся следует обратить внимание на то, что выведенное правило умножения имеет место лишь в том случае, если имеют смысл события А/В и В/А. А они имеют смысл тогда, когда события А и В совместны.

На формирование умений у учащихся решать задачи с применением правила умножения вероятностей предлагается решить ряд задач.

1. из колоды в 32карты наугад одну за другой вынимают две карты. Найти вероятность того, что:

- вытянуты два валета;

- вытянуты две карты пиковой масти;

- вытянуты валет и дама;

2. в ящике 5 белых и 7 черных шаров. Последовательно вынимаем два шара. Какова вероятность того, что они оба белые?

3. имеется 3ящика, содержащих по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наугад вынимают по одной детали. Найти вероятность того, что все 3 вынутые детали окажутся стандартными.

§4. Описание опытной работы

В качестве основной цели опытно - экспериментальной работы была представлена апробация предложенных методических рекомендаций по изучению основных теоретико-вероятностных вопросов в школьном курсе математики в классах с углубленным изучением математике.

Достижение поставленной цели потребовало решения следующих задач:

- разработать содержание цикла уроков по теории вероятностей;

- проверить целесообразность разработанных методических рекомендаций.

Основная гипотеза опытной работы: включение элементов в теории вероятностей в математическую подготовку учащихся способствует общему повышению интеллектуального уровня учащихся и качества их математической подготовки.

При проведении опытной работы мы пользовались следующими методами:

- наблюдение за процессом усвоения знаний учащимися;

- беседы с учителем математики этого класса и учениками;

- проведение диагностической контрольной работы;

количественная и качественная обработка полученных данных.

Эксперимент был проведен в Татьяновской средней школе Благовещенского района Алтайского края в 11 классе.

В классе 20 учащихся. Из них 5 имеют высокий уровень подготовки, материал усваивается ими без пробелов в знаниях; трое имеют низкий уровень подготовки, усвоение материала или происходят с большими трудностями; остальные учащиеся занимаются хорошо.

Ребята легко вступают в контакт с педагогом, проявляют интерес к получению знаний, охотно помогают учителю в подготовке и проведении занятий.

Учащиеся занимаются на повышенном уровне обучения математике. Для хорошо подготовленных учащихся учитель предусматривает индивидуальные задания, а со слабыми, занимается дополнительно.

При обучении учащихся математике учитель использует методы проблемного обучения, эмпирические методы (наблюдение, опыт, измерение), метод сравнения и аналогии. Часто на уроках педагог организует самостоятельную работу и придерживается индивидуализации в обучении.

Было проведено семь уроков. Ниже представлены основные содержательные компоненты теоретического материала темы, изученные на уроках;

- виды событий (достоверные, невозможные, случайные);

- вероятностное пространство;

- классическое определение вероятности;

- определение события;

- вероятность события;

- теоремы о сумме и произведений вероятности событий.

Дидактический процесс был ориентирован на усвоение выделенных теоретических основ и на формирования навыка решения типовых задач, представленных в Гл II §2.

Проектирование процесса обучения осуществлялось в направлении реализации следующих методических положений:

- в начале изучения теории вероятностей рассмотрение основ теории, поиск решения задач целесообразно предварить постановкой опытов;

- формулировка определений основных теоретико-вероятностных понятий, формулы сложения и умножения вероятностей полезно, наряду с символической записью, представлять в виде наглядных схем;

- решение систем задач определенного типа важно обобщать выделением алгоритма. Дальнейшее решение задач проводится в рамках принятого алгоритма с определенной формой записи решения;

- предварительное решение специально подобранных задач способствует самостоятельному открытию учащимися теорем, их формулировок, выявлению способа доказательства теорем и проведению доказательства;

- целесообразно использование различных форм проведения учебных занятий: лекций, уроков-практикумов и других.

На первом уроке проведенном в форме беседы с учащимися, были выделены 3 класса событий: достоверные, невозможные, случайные. Ребята с интересом приняли участие в беседе: приводили примеры событий, классифицировали предложенные учителем события, выделяли их в группы. На этом же уроке были представлены заранее подготовленные сообщения учеников на темы: "теория вероятностей как наука", "применение теории вероятностей". Было введено понятие вероятностного пространства. С целью подготовки введения этого понятия был проведен опыт, описанный в Гл II. §3.

По окончанию опыта ребята сами выдвигали гипотезу о возможных множествах вероятностного пространства одного и того же испытания. Урок был интересен учащимся, так как работа была нетрадиционной; каждому ученику, была дана возможность лично убедится, в справедливости теоретических фактов.

На втором уроке было рассмотрено классическое определение вероятности события. Урок был проведен в форме лекции, содержание которой составил материал, представленный в Гл. I. §5.

На уроке был выявлен алгоритм решения задач по классическому определению вероятности. Очень продуктивной оказалась работа по геометрическому представлению формулы нахождения вероятности события по классическому определению, что помогло учащимся хорошо ее запомнить. Дальнейшее аналогичное интерпретирование теоретического материала позволяет учащимся систематизировать свои знания по теории вероятностей и успешно применять их при решении задач.

Третий урок был посвящен решению задач по классическому определению вероятности. Дидактический материал представлен в Гл II. § 3.

На четвертом и пятом уроках были изучены теоремы о сумме и произведении вероятности событий. При проведении этих уроков были использованы дидактические материалы, представленные в Гл II. § 3.

На шестом уроке рассматривались решения задач на применение теории суммы и произведения вероятностей событий, дидактический материал для которого представлен в Гл II. § 3.

На последнем седьмом уроке была проведена разработанная контрольная работа, представленная в приложении, с целью проверки качества знаний учащихся по теме "элементы теории вероятностей".

Задания первого и второго уровней были предложены с целью проверки знаний формул теорем о сумме и произведении вероятностей событий.

Задание третьего уровня преследует цель анализа знаний по классификации событий на достоверные, невозможные и случайные.

Задание четвертого уровня направлено на проверку умения решать задачи по классическому определению вероятности.

Большинство учащихся (57%) справилось с работой на "отлично", 32% - "на хорошо", остальные 11% - "на удовлетворительно".

Анализируя результаты работы учеников, можно сделать вывод, что большая часть учащихся усвоила основные теоретико-вероятностные вопросы и умеет решать задачи с применением классического определения вероятности.

Такие результаты возможно связанны с применением в процессе обучения разработанных методических рекомендаций.

Заключение

На основе проведенного анализа психолого-педагогической и методической литературы, а так же проведенной опытно-экспериментальной работой можно сделать выводы.

1. Основной целью изучения темы "элементы теории вероятностей" в классах с углубленным изучением математики как дедуктивной системе знаний; систематизация некоторых способов решения задач; создание условий для понимания основной идеи практической значимости теории вероятностей.

2. Анализ содержания темы элементы теории вероятностей различных учебных пособий, предназначенных для изучения в школе, позволяет в качестве основного предложить учебное пособие под редакцией Н.Я. Виленкина [5], материал в котором изложен на высокой ступени абстракции, дедуктивно; система задач, в котором полна.

3. При изучении теории вероятностей считаем целесообразным использование следующих методических рекомендаций:

- в начале изучения теории вероятностей рассмотрение основ теории, поиск решения задачи предварить постановкой опытов;

- формулировки определений основных теоретико-вероятностных вопросов, формулы сложения и умножения возможностей на ряду с символической записью, представлять в виде наглядных схем;

- решение систем задач определенного типа обобщать выделением алгоритма. Дальнейшее решение задач проводить в рамках принятого алгоритма с определенной формой записи решения;

- предварительно подбирать задачи, способствующие самостоятельному открытию учащимися теорем их формулировок, выявлению способа доказательства теорем и проведению доказательства;

- использовать различные формы проведения учебных занятий: лекций, уроков -практикумов и других.

Список использованной литературы

1. Баженов М.А. Из опыта преподавания теории вероятностей // Математика в школе, 1972 №2.

2. Вейц Б.Е. Элементы теории вероятностей и комбинаторика // Математика в школе, 1969 №1.

3. Вентцель Е.С. Теория вероятностей - М.: Наука, 1964.

4. Виленкин Н.Я. Алгебра 9 - М.: Просвещение, 1999.

5. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбург С.И. Алгебра и математический анализ 11 - М.: Просвещение, 1979.

6. Виленкин Н.Я., Потапов Задачник - практикум по теории вероятностей с элементами комбинаторики и математической статистики: учебное пособие для студентов физико-математических факультетов 4курса - М.: Просвещение, 1979.

7. Гмурман В.Е. Теория вероятностей и математическая статистика - М.: Просвящение, 1988.

8. Гнеденко Б.В. Теория вероятностей и математическая статистика - М.: Просвещение, 1974.

9. Колмогоров А.Н. Теория вероятности и комбинаторика // Математика в школе 1968 №2, №3.

10. Гнеденко Б.В., Хинчин А.Я. Элементарное введение в теорию вероятностей - М.: Наука, 1982.

11. Журбенко А.Н. Введение в теорию вероятностей и комбинаторику // Математика в школе, 1968 №2.

12. Колмогоров А.Н., Журбенко И.Г. Введение в теорию вероятностей - М.: Наука, 1982.

13. Колмогоров А.Н. Введение в теорию вероятностей и комбинаторику // Математика в школе, 1968.

14. Колягин М.Ю. и др. Методика преподавания математики в средней школе. Частные методики - М.: Просвещение, 1977.

15. Колягин Ю.М., Текан В. В о прикладной и практической направленности обучения математике // Математика в школе, 1985 №6.

16. Лютикас В.С. Факультативный курс по математике. Теория вероятностей - М.: Просвещение, 1999.

17. Майстров Л.Е. Развитие понятия вероятности - М.: Наука, 1980.

18. Программа для школ (классов) с углубленным изучением математики - М.: Просвещение, 1994.

19. Савельев Л.Я. Комбинаторика и вероятность - М.: Наука, 1975.

20. Солодовников А.С. Теория вероятностей - М.: Просвещение, 1978.


Подобные документы

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача [82,0 K], добавлен 12.02.2011

  • Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.

    презентация [474,2 K], добавлен 17.08.2015

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа [22,6 K], добавлен 20.12.2009

  • Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.

    курсовая работа [115,9 K], добавлен 24.11.2010

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка [96,6 K], добавлен 25.12.2010

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.

    контрольная работа [129,1 K], добавлен 03.12.2010

  • Особенности использования теории вероятностей в сфере транспорта. Сравнительный анализ вероятностей катастрофы летательного аппарата: постановка задачи и ее математическая интерпретация. Определение надежности элементов системы энергоснабжения самолета.

    контрольная работа [130,6 K], добавлен 11.09.2014

  • Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.

    реферат [114,7 K], добавлен 08.05.2011

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.