Поиск нулей функции. Итерационные методы

Поиск нулей функции - исследование и построение различных функций зависимостей. Исследование непрерывных процессов. Метод простой итерации. Итерационный процесс Ньютона, аналитическое задание системы уравнений и локализация области нахождения корня.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.08.2009
Размер файла 54,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5

Реферат по курсу “Численные методы

Тема: “ Поиск нулей функции. Итерационные методы”

Содержание

Введение

1. Поиск нулей функции

2. Метод простой итерации

3. Итерационный процесс Ньютона

Литература

Ведение

Поиск нулей функции является важнейшей процедурой при исследовании и построении различных функций зависимостей, исследовании непрерывных процессов. Фактически поиск нулей функций сводится в постепенному приближению к области, в которой функция приобретает нулевое значение и исследованию ее.

Если уравнение представлено в форме , то нахождение корня такого уравнения формулируется как задача поиска такого значения (или таких значений) , при котором .

1. Поиск нулей функций

Характерным признаком наличия корня у функции в некотором интервале служит различие знаков у значений функции слева и справа от точки . Первой проблемой, непременно возникающей при поиске нулей функции, является обнаружение и минимизация размеров области нахождения нужного корня.

Многие уравнения благодаря пониманию физики описываемых ими явлений, как правило, дают представления об областях расположения нулей и обычно не требуют проведения аналитических исследований. В общем же случае, когда требуется найти все корни, область определения функции должна быть любыми известными эвристическими или аналитическими приемами расчленена на подобласти, включающие по одному корню. Это означает, что для каждой подобласти указаны границы возможного изменения каждой независимой переменной заданной системы нелинейных алгебраических уравнений. Для сжатия подобласти в точку, соответствующую корню, теперь могут быть предложены численные процедуры, из которых рассмотрим наиболее простые и популярные.

2. Метод простой итерации

Метод простой итерации (последовательного приближения) начинается с неявного разрешения заданной системы алгебраических уравнений относительно вектора переменной , например, так:

,

где , матрица масштабирующих коэффициентов, в общем случае недиагональная.

Итерационный процесс начинается с подстановки в правую часть произвольного значения и вычисления очередного вектора для последующей подстановки:

Сходимость к решению такого процесса зависит от вида функции правой части и, следовательно, от величин масштабирующих коэффициентов . Сходимость будет, если скалярная функция , однозначно характеризующая изменение вектора за один цикл, больше значения этой функции при подстановке в нее соответствующих :

.

Если и , условие именуют условием Липшица.

Если - диагональная матрица, то величины можно выбрать из условия отрицательности скорости изменения . Для этого достаточно взять производную от рекуррентной формулы и установить соответствующее соотношение с нулем:

Таким образом, знание максимальных значений производных системы функций в области [a, b] нахождения корня , позволяет выбрать масштабирующие коэффициенты, обеспечивающие сходимость процесса.

3. Итерационный процесс Ньютона

Вторым по важности и популярности итерационным процессом для случая аналитического задания системы уравнений и локализации области нахождения корня является итерационный процесс Ньютона.

.

Пусть отклонение начального вектора искомого решения отличается от точного на величину , тогда, выполнив разложение в ряд Тейлора неявных функций в окрестности и ограничившись слагаемыми с частными производными первого порядка, получим систему уравнений для вычисления добавок к начальному вектору, приближающих последний к значению корня:

.

Обозначим частные производные (). Система уравнений для вычисления вектора будет:

,

где - матрица, обратная матрице Якоби из частных производных:

.

Итерационную процедуру Ньютона для вычисления корней нелинейной системы уравнений можно в результате представить так:

,

.

Здесь верхний индекс в обозначениях частных производных указывает на подстановку в них значения x , полученного на k-той итерации.

Остановка итерационного процесса осуществляется тогда, когда по всем компонентам вектора x достигнута заданная относительная погрешность , т.е. должна быть истинной конъюнкция:

В одномерном случае итерации для уравнения g(x)=0 выглядят так:

Нетрудно заметить одну и ту же природу коэффициентов, стоящих перед значением функций у трех вариантов итерационных процедур и обеспечивающих сходимость процесса : все они учитывают значение производных в области нахождения нулей функции.

Литература

1. Бахвалов Н.С. Численные методы в задачах и упражнениях / Н. С. Бахвалов А.В. Лапин, Е.В. Чижонков. М.: Высш. шк., 2000. 192 с.

2. Блинов И.Н., “Об одном итерационном процессе Ньютона”, Изв. АН СССР. Сер. матем., 33:1 (1969), 3-14

3. Вайнберг М.М., Треногин В.А. Теория ветвления решений нелинейных уравнений. М.: Наука, 1969. 528 с.

4. Вержбицкий В.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш. шк., 2001. - 383с.

5. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976. 544 с.

6. Люстерник Л.А., Соболев В.И. Элементы функционального анализа. М.: Наука, 1965. 250 с.

7. Шуп Т.Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. - 255с.


Подобные документы

  • Поиск нулей функции как важнейшая процедура при исследовании и построении различных функций зависимостей, его значение при изучении непрерывных процессов. Характерные признаки наличия корня у функции. Итерация Ньютона для задания системы уравнений.

    реферат [48,6 K], добавлен 10.08.2009

  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа [151,3 K], добавлен 15.07.2009

  • Интерполяция с помощью полинома Ньютона исходных данных. Значение интерполяционного полинома в заданной точке. Уточнение значения корня на заданном интервале тремя итерациями и поиск погрешности вычисления. Методы треугольников, трапеций и Симпсона.

    контрольная работа [225,2 K], добавлен 06.06.2011

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.

    контрольная работа [117,5 K], добавлен 27.08.2013

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа [94,4 K], добавлен 04.09.2010

  • Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.

    контрольная работа [204,5 K], добавлен 06.05.2012

  • Решение системы линейных уравнений с неизвестными методами Гаусса, Зейделя и простой итерации. Вычисление корня уравнения методами дихотомии, хорды и простой итерации. Нахождение приближённого значения интеграла с точностью до 0,001 методом Симпсона.

    контрольная работа [1,7 M], добавлен 05.07.2014

  • Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.

    курсовая работа [820,5 K], добавлен 22.08.2010

  • Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.

    курсовая работа [2,4 M], добавлен 14.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.