Ветвящиеся циклические процессы

Случайные процессы в реальной финансово–экономической практике редко бывают марковскими, поскольку на протекание процесса в будущем влияет не только его состояние в данное время, но и то, как он протекал в прошлом. Ветвящиеся циклические процессы.

Рубрика Математика
Вид практическая работа
Язык русский
Дата добавления 06.04.2008
Размер файла 79,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Содержание:

  • Введение 3
  • Теория 4
  • Практика 10
  • Выводы 12
  • Список использованной литературы 13

Введение

Случайные процессы в реальной финансово-экономической практике редко бывают марковскими, поскольку на протекание процесса в будущем влияет не только его состояние в текущий момент времени, но и то, как он протекал в прошлом.

Но, тем не менее, использование приближённых моделей на практике позволяет достаточно точно (с определённой точностью) оценивать различные системы. В данной теоретико-практической работе будет рассмотрена теория о ветвящихся циклических процессах, с помощью которой можно предсказывать состояние исследуемой системы в будущем через достаточно длительный промежуток времени.

В процессе данной работы я рассмотрю основные положения теории о ветвящихся циклических процессах; приведу пример задачи, с которой можно столкнуться в реальной жизни, и её решение с помощью рассматриваемой теории.

Теория

Введём основные понятия, с которыми нам предстоит работать. Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если эта система с течением времени t изменяет свои состояния S(t) (всего возможных состояний системы n штук) случайным образом, при чём так, что для каждого момента времени вероятность состояния S(t) системы S в будущем () зависит только от её состояния S() в настоящем и не зависит от того, как и сколько времени развивался этот процесс в прошлом (), то говорят, что в системе S протекает марковский случайный процесс.

Процесс является процессом с непрерывным временем, если в нём система может менять свои состояния в любой случайный момент времени.

Плотностью вероятности перехода системы S из состояния в состояние в момент времени t называется величина

Если же плотности вероятностей переходов не зависят от времени t, то такой процесс называется однородным.

Марковский процесс, протекающий в системе S с n состояниями, называется ветвящимся циклическим процессом, если его граф состояний имеет вид:

Теорема:

Пусть в системе S протекает ветвящийся циклический однородный марковский процесс с непрерывным временем, причём возможный непосредственный переход из состояния разветвляется на переходы в состояния соответственно с вероятностями , сумма которых равна 1:

(1)

Переходы из состояний сходятся в состояние .

Тогда финальные вероятности Вероятности состояний системы в финальном стационарном режиме, при котором они уже не зависят ни от времени, ни от начального распределения вероятностей, называются финальными вероятностями соответствующих состояний системы S определяются следующими формулами:

где .

Доказательство:

Т.к. ветвящийся циклический процесс можно представить в виде обычного циклического процесса и собственно разветвления, то, учитывая свойство циклического процесса, что плотность вероятности перехода из неразветвлённого состояния в соседнее справа равна обратной величине среднего времени пребывания (подряд) системы S в состоянии , имеем

(2)

Интенсивность потока уходов из состояния равна , где-- среднее время пребывания (подряд) системы S в состоянии . Тогда будет представлять собой долю величины , определенную вероятностью qm,m+k:

(3)

Составим по графу (на рис. 1) систему линейных алгебраических уравнений, неизвестными в которой являются финальные вероятности :

(4)

Подставляя 2 и 3 в 4, получим:

(5)

Составим матрицу коэффициентов системы (5) с учетом того, что коэффициент при рт в т-м уравнении в силу (1) равен

,

Столбцы Р

1

2

3

m-1

m

m+1

m+2

m+i

m+i+1

m+i+2

n-1

n

Строки

Проведем следующие элементарные преобразования над строками этой матрицы:

2-ю строку прибавим к 3-й строке;

полученную 3-ю строку прибавим к 4-й строке;

полученную 4-ю строку прибавим к 5-й строке;

и так далее;

полученную (m-1)-ю строку прибавим к m-й строке;

полученную mстроку умножим последовательно на и прибавим соответственно к (m+1)-й, (m+2)-й,..., (m+i)-й строке;

сумму полученных (m+1)-й, (m+2)-й,..., (m+i)-й строк прибавим к (m+i+1)-й строке, учитывая равенство (1);

полученную (m+i+1)-ю строку прибавим к (m+i+2)-й строке;

полученную (m+i+2) строку прибавим к (m+i+3)-й строке;

и так далее;

полученную (п-1)-ю строку прибавим к п-й строке.

В результате этих преобразований получим матрицу следующего вида:

Первая и последняя строки этой матрицы пропорциональны, а потому одну из них, например первую, можно отбросить.

Полученная после отбрасывания 1-й строки матрица порождает следующую систему линейных уравнений:

Отсюда финальные вероятности можно выразить через финальную вероятность :

(6)

Подставим выражения (6) в нормировочное условие и найдем :

.

Откуда или , где . Подставляя найденное выражение в (6) получаем доказываемые формулы.

Практика

В наше время любой банк имеет банкоматы в различных точках города для удобства своих клиентов. Для планирования будущих расходов на содержание банкомата применим теорию о ветвящихся циклических процессах.

В качестве системы S возьмём банкомат. Банкомат может находиться в следующих состояниях:

S1 - исправен, работает;

S2 - неисправен, ведётся поиск неисправности;

S3 - неисправность обнаружена и оказалась незначительной, ремонтируется местными средствами;

S4 - неисправность обнаружена и оказалась серьёзной, ремонт ведётся приглашённым со стороны специалистом;

S5 - ремонт законен, ведётся подготовка к включению банкомата.

Процесс, протекающий в системе - однородный, марковский, т.к. все потоки событий, под воздействием которых происходят переходы банкомата из состояния в состояние, - простейшие.

Среднее время исправной работы банкомата подряд равно месяц; среднее время поиска неисправности банкомата равно часа; среднее время ремонта местными средствами равно часа; среднее время ремонта банкомата специалистом равно дня; среднее время подготовки банкомата к работе час.

Вероятность того, что неисправность оказалась незначительной и может быть устранена местными средствами р=0,8. Вероятность же того, что неисправность серьёзная и без специалиста не обойтись 1-р=0,2.

Если банкомат работает исправно, то стоимость его обслуживания составляет 100 рублей в день включается потребляемое банкоматом электричество и работа с наличностью банкомата; один час работы специалиста по устранению неисправностей составляет 200 рублей в час. В остальных состояниях стоимость содержания банкомата равна величине амортизации и составляет 7 рублей в день.

Спрогнозируем средний расход на следующий год, идущий на содержание банкомата.

Решение: граф состояний системы будет иметь вид:

Приведём данные в условии задачи к одной единице, например, сутки:

Как уже было сказано выше процесс, протекающий в системе, - однородный, марковский и к тому же он является ветвящимся циклическим с непрерывным временем, тогда мы можем воспользоваться полученными выше формулами:

Тогда ,

,

,

,

Теперь определим общий расход на содержание банкомата: рублей за сутки, тогда за год эта сумма составит приближённо 70 100 рублей.

Выводы

Таким образом, мы на практике убедились, что теория о ветвящихся циклических процессах, возможно и не обладает возможностями для широкого применения, но, тем не менее, является простым и действенным инструментом при планировании различных экономических процессов.

Но надо учитывать, что это всего лишь маленькое ответвление теории о марковских процессах, на которой, в свою очередь, базируются многие другие теории, в частности теория о массовом обслуживании в экономической сфере.

Список использованной литературы

1) Лабскер Л.Г. Вероятностное моделирование в финансово - экономической области - М.: Альпина Паблишер, 2002. - 224 с.

2) http://www.gazeta.ru/2006/04/13/oa_195828.shtml

3) Журнал вычислительной математики и математической физики Т.46.№03 - 2006

4) Свешников А.А. Прикладные методы теории марковских процессов: Учебное пособие. М.: Издательство «Лань», 2007. - 192 с.


Подобные документы

  • Случайная функция, случайный процесс, случайное поле. Функция, плотность распределения вероятностей случайного процесса и их математические модели. Моментные функции случайного процесса. Условные распределения вероятностей. Стационарные процессы.

    реферат [54,7 K], добавлен 03.12.2007

  • Понятие алгебраической системы (группы), ключевые условия, которым она удовлетворяет и ее нейтральный элемент. Основные свойства группы. Мультипликативные и аддитивные циклические подгруппы и группы. Теорема Лагранжа и характеристика следствий из нее.

    курсовая работа [173,6 K], добавлен 10.01.2015

  • Определение случайного процесса в математике, ряд терминов и понятий, описывающих механизм этого процесса. Марковские, стационарные случайные процессы с дискретными состояниями. Особенности эргодического свойства стационарных случайных процессов.

    реферат [33,1 K], добавлен 15.05.2010

  • Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.

    контрольная работа [178,1 K], добавлен 15.06.2012

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.

    контрольная работа [30,0 K], добавлен 15.06.2012

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

  • Главные особенности вычисления преобразования Фурье, приложения и методы использования их на практике. Решение сложных уравнений физики, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии.

    контрольная работа [151,0 K], добавлен 14.12.2013

  • Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат [402,0 K], добавлен 08.01.2013

  • Математическое понятие свободной полугруппы. Полугруппы слов над некоторым алфавитом. Комбинаторные свойства слов над произвольным алфавитом. Циклические (моногенные) полугруппы. Сводные коммутативные полугруппы. Обзор результатов по проблеме Туэ.

    дипломная работа [116,7 K], добавлен 14.06.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.