Краевая задача Гильберта

Метод регуляризующего множителя для решения задачи Гильберта для аналитических функций в случае произвольной односвязной области. Постановка краевой задачи типа Гильберта в классе бианалитических функций, а также решение конкретных примеров задач.

Рубрика Математика
Предмет Математическая физика
Вид дипломная работа
Язык русский
Прислал(а) Евгений
Дата добавления 20.05.2013
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.

    курсовая работа [1003,8 K], добавлен 29.11.2014

  • Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.

    курсовая работа [485,6 K], добавлен 20.12.2011

  • Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.

    методичка [335,0 K], добавлен 02.03.2010

  • Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.

    контрольная работа [253,5 K], добавлен 23.04.2014

  • Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.

    курсовая работа [440,4 K], добавлен 27.05.2015

  • Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).

    лекция [463,7 K], добавлен 28.06.2009

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Історія появи й розвитку геометрії: постулати Евкліда, аксіоматика Гильберта та інші системи геометричних аксіом. Неевклідові геометрії в системі Вейля. Різні моделі площини Лобачевского, незалежність 5-го постулату Евкліда від інших аксіом Гильберта.

    дипломная работа [263,0 K], добавлен 12.02.2011

  • Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа [132,2 K], добавлен 25.11.2011

  • Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.

    курсовая работа [245,2 K], добавлен 10.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.