Элементы алгебры и геометрии

Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 16.04.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Контрольная работа

«Элементы алгебры и геометрии»

Вариант 9

Задание № 19

Решить систему трех уравнений с тремя неизвестными при помощи определителей.

Найдем определитель матрицы А:

?(А) = =

= 2 • 1 •6 + (-3) (-2) •3 + 1 • 1 • (-2) - 1 • 1 • 3 - (-3) • 1 • 6 - 2 (-2) • (-2) =

= 12 + 18 - 2 - 3 + 18 - 8 = 48 - 13 = 35

?(А) = 35

Найдём ?1, ?2, ?3

?1 = =

= 3 • 1 • 6 + (-3) (-2) • 0 + 1 • 4 •(-2) - 0 •1 • 1 - 4 • (-3) • 6 - 3 (-2) (-2) =

= 18 + 0 - 8 - 0 + 72 - 12 = 90 - 20 = 70

?2 (А) = =

= 2 • 4 • 6 + 3 • (-2) • 3 + 1 • 1 • 0 - 3 • 4 • 1 - 1 • 3 • 6 - 2 • 0 • (-2) =

= 48 - 18 + 0 - 12 -18 - 0 = 0

?3 = =

= 2 • 1 • 0 + (-3) 4 • 3 + 3 • 1 •(-2) - 3 •1 • 3 - 1 • (-3) • 0 - 2 • (-2) 4 =

= 0 - 36 - 6 - 9 + 0 + 16 = - 20 - 15 = - 35

Найдем корни:

Ответ: 2; 0; -1

Задание № 40

Исследовать данную систему уравнений на совместность и решить её, если она совместна.

Запишем матрицу А и найдем ранг матрицы А:

Поменяем местами первую и вторую строки:

Первую строку умножим на 3 и вычтем из неё вторую, первую умножим на 5 и вычтем из неё третью:

Вычтем из второй строки - третью:

Ранг матрицы

Запишем расширенную матрицу

Найдем определитель расширенной матрицы. Поменяем местами первую и вторую строки:

Умножим первую строку на 3 и вычтем из неё вторую, умножим первую строку на 5 и вычтем из неё третью:

Вычтем из второй строки третью:

Ранг расширенной матрицы

Ранг расширенной матрицы системы не равен рангу матрицы системы, значит система несовместна (не имеет решений).

Задание № 54

Даны координаты точек А (х11) и В (х22) и радиус окружности R, центр которой находится в начале координат.

Требуется:

1) составить каноническое уравнение эллипса, проходящего через данные точки А и В;

2) найти полуоси, фокусы и эксцентриситет этого эллипса;

3) найти все точки пересечения эллипса с данной окружностью;

4) построить эллипс и окружность.

Решение:

1. Общий вид канонического уравнения эллипса:

Подставим координаты точек А и В в общее уравнение:

Подставляем найденные переменные в общее уравнение эллипса:

2. Полуоси:

3. Точки пересечения данного эллипса с окружностью R=8, найдем решив систему уравнений:

Получили четыре точки пересечения эллипса с окружностью:

4.

Задание № 69

Дано: вершины пирамиды АВСD

1. Записать векторы в системе орт и найти их модули:

А (3; 3; -3); В (7; 7; -5); С (5; 14; -13); D (3; 5; -2).

= (7 - 3; 7 - 3; -5 + 3) = (4; 4; -2)$

;

= = 6;

= (5 - 3; 14 - 3; -13 + 3) = (2; 11; -10);

= 2i + 11j - 10k;

= 15;

= (3 - 3; 5 - 3; -2 + 3) = (0; 2; 1);

= =

2. Найти угол между векторами и :

3. Найти проекцию вектора на вектор :

Найти площадь грани АВС:

=

;

Найти объем пирамиды ABCD:

= =

Задание 93

Даны координаты точек А, В, С, М:

А (5; 4; 1); В (-1; -2; -2); С (3; -2; 2); М (-5; 5; 4).

1.Найти уравнение плоскости Q, проходящей через точки А, В, С:

= 0;

= 0;

(x - 5)( - 6 - 18) - (y - 4)( - 6 - 6) + (z - 1)(36 - 12) = 0;

- 24(x - 5) + 12(y - 4) + 24(z - 1) = 0;

- 2(x - 5) + (y - 4) + 2(z - 1) = 0;

-2x + 10 + y - 4 + 2z - 2 = 0;

-2x + y + 2z + 4 = 0 - уравнение плоскости Q.

2.Составить каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q:

Подставим координаты точки М (-5; 5; 4) и коэффициенты общего уравнения плоскости Q (-2; 1; 2) в каноническое уравнение прямой:

3.Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями хОу, уОz, xOz: пусть

Где t - некоторый параметр, тогда уравнения прямой можно записать так:

Подставим данные выражения в уравнение плоскости Q и найдем параметр t:

Подставим значение параметра t в уравнения и найдем координаты точки пересечения:

Итак, координаты точки P, точки пересечения полученной во втором пункте прямой и плоскости Q: Р.

Р1 - точка пересечения прямой с с хОу: z = 0;

P1 (2,6; 1,2; 0).

P2 - точка пересечения прямой с уОz: x = 0;

P2 (0; 1,6; 2,8).

Р3 - точка пересечения прямой с xOz: y = 0;

;

P3 (0,5; 0; 1,5).

Найти расстояние от точки М до плоскости Q:

т.к. прямая МР перпендикулярна плоскости Q, точка Р принадлежит плоскости Q, то расстояние между точками М и Р и будет расстоянием от точки М до плоскости Q.

Производная и дифференциал

Задание № 114

Найти пределы:

Разложим на множители и числитель и знаменатель:

Задание № 135

Функция у задана различными аналитическими выражениями для различных областей изменения аргумента х.

1. Найти точки разрыва функции, если они существуют.

Данная функция определена и непрерывна в интервалах ( При и меняется аналитическое выражение функции и только в этих точках функция может иметь разрывы.

Определим односторонние пределы в

Т.к. односторонние пределы в не совпадают, значит разрыв I рода.

Определим односторонние пределы в точке:

Т.к. односторонние пределы в точке совпадают, значит функция в точке непрерывна.

2. Найти скачок функции в точке разрыва:

точка разрыва

Задание № 198

Найти приближенное значение указанных величин с помощью дифференциалов соответствующих функций.

или

Задание № 156

Найти производные пользуясь формулами дифференцирования:

Задание №240

Исследовать функцию методами дифференциального исчисления.

Начертить график.

План исследования:

1.найти область существования функции;

2.исследовать на непрерывность, найти точки разрыва и её односторонние пределы в этих точках;

3. исследовать на четность, нечетность;

4. найти точки экстремума, интервалы возрастания, убывания функции;

5. найти точки перегиба, интервалы выпуклости и вогнутости;

6.асимптоты, если они есть;

7. построить график.

Задание № 272

Требуется поставить палатку в форме правильной четырехугольной пирамиды с заданной боковой поверхностью . Каковы должны быть размеры палатки (сторона а и высота h) чтобы вместимость палатки была наибольшей.

Решение:

Вместимость палатки - это объем палатки. Объем правильной пирамиды находится по формуле где а - сторона квадрата (основание пирамиды), h - высота пирамиды.

Выразим высоту пирамиды через сторону квадрата:


Подобные документы

  • Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.

    контрольная работа [161,0 K], добавлен 16.03.2010

  • Матричные уравнения, их решение и проверка. Собственные числа и собственные векторы матрицы А. Решение системы методом Жорданa-Гаусса. Нахождение пределов и производных функции, ее градиент. Исследование функции методами дифференциального исчисления.

    контрольная работа [287,0 K], добавлен 10.02.2011

  • Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.

    контрольная работа [1,1 M], добавлен 04.05.2010

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.

    презентация [642,7 K], добавлен 31.10.2016

  • Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.

    контрольная работа [102,5 K], добавлен 04.12.2013

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа [797,4 K], добавлен 18.11.2013

  • Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.

    задача [26,8 K], добавлен 29.05.2012

  • Нахождение длины ребер, углов между ними, площадей граней и объема пирамиды по координатам вершин пирамиды. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера, средствами матричного исчисления. Уравнение кривой второго порядка.

    контрольная работа [330,3 K], добавлен 01.05.2012

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие [1,5 M], добавлен 06.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.