Элементы алгебры и геометрии
Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.04.2010 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Контрольная работа
«Элементы алгебры и геометрии»
Вариант 9
Задание № 19
Решить систему трех уравнений с тремя неизвестными при помощи определителей.
Найдем определитель матрицы А:
?(А) = =
= 2 • 1 •6 + (-3) (-2) •3 + 1 • 1 • (-2) - 1 • 1 • 3 - (-3) • 1 • 6 - 2 (-2) • (-2) =
= 12 + 18 - 2 - 3 + 18 - 8 = 48 - 13 = 35
?(А) = 35
Найдём ?1, ?2, ?3
?1 = =
= 3 • 1 • 6 + (-3) (-2) • 0 + 1 • 4 •(-2) - 0 •1 • 1 - 4 • (-3) • 6 - 3 (-2) (-2) =
= 18 + 0 - 8 - 0 + 72 - 12 = 90 - 20 = 70
?2 (А) = =
= 2 • 4 • 6 + 3 • (-2) • 3 + 1 • 1 • 0 - 3 • 4 • 1 - 1 • 3 • 6 - 2 • 0 • (-2) =
= 48 - 18 + 0 - 12 -18 - 0 = 0
?3 = =
= 2 • 1 • 0 + (-3) 4 • 3 + 3 • 1 •(-2) - 3 •1 • 3 - 1 • (-3) • 0 - 2 • (-2) 4 =
= 0 - 36 - 6 - 9 + 0 + 16 = - 20 - 15 = - 35
Найдем корни:
Ответ: 2; 0; -1
Задание № 40
Исследовать данную систему уравнений на совместность и решить её, если она совместна.
Запишем матрицу А и найдем ранг матрицы А:
Поменяем местами первую и вторую строки:
Первую строку умножим на 3 и вычтем из неё вторую, первую умножим на 5 и вычтем из неё третью:
Вычтем из второй строки - третью:
Ранг матрицы
Запишем расширенную матрицу
Найдем определитель расширенной матрицы. Поменяем местами первую и вторую строки:
Умножим первую строку на 3 и вычтем из неё вторую, умножим первую строку на 5 и вычтем из неё третью:
Вычтем из второй строки третью:
Ранг расширенной матрицы
Ранг расширенной матрицы системы не равен рангу матрицы системы, значит система несовместна (не имеет решений).
Задание № 54
Даны координаты точек А (х1;у1) и В (х2;у2) и радиус окружности R, центр которой находится в начале координат.
Требуется:
1) составить каноническое уравнение эллипса, проходящего через данные точки А и В;
2) найти полуоси, фокусы и эксцентриситет этого эллипса;
3) найти все точки пересечения эллипса с данной окружностью;
4) построить эллипс и окружность.
Решение:
1. Общий вид канонического уравнения эллипса:
Подставим координаты точек А и В в общее уравнение:
Подставляем найденные переменные в общее уравнение эллипса:
2. Полуоси:
3. Точки пересечения данного эллипса с окружностью R=8, найдем решив систему уравнений:
Получили четыре точки пересечения эллипса с окружностью:
4.
Задание № 69
Дано: вершины пирамиды АВСD
1. Записать векторы в системе орт и найти их модули:
А (3; 3; -3); В (7; 7; -5); С (5; 14; -13); D (3; 5; -2).
= (7 - 3; 7 - 3; -5 + 3) = (4; 4; -2)$
;
= = 6;
= (5 - 3; 14 - 3; -13 + 3) = (2; 11; -10);
= 2i + 11j - 10k;
= 15;
= (3 - 3; 5 - 3; -2 + 3) = (0; 2; 1);
= =
2. Найти угол между векторами и :
3. Найти проекцию вектора на вектор :
Найти площадь грани АВС:
=
;
Найти объем пирамиды ABCD:
= =
Задание № 93
Даны координаты точек А, В, С, М:
А (5; 4; 1); В (-1; -2; -2); С (3; -2; 2); М (-5; 5; 4).
1.Найти уравнение плоскости Q, проходящей через точки А, В, С:
= 0;
= 0;
(x - 5)( - 6 - 18) - (y - 4)( - 6 - 6) + (z - 1)(36 - 12) = 0;
- 24(x - 5) + 12(y - 4) + 24(z - 1) = 0;
- 2(x - 5) + (y - 4) + 2(z - 1) = 0;
-2x + 10 + y - 4 + 2z - 2 = 0;
-2x + y + 2z + 4 = 0 - уравнение плоскости Q.
2.Составить каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q:
Подставим координаты точки М (-5; 5; 4) и коэффициенты общего уравнения плоскости Q (-2; 1; 2) в каноническое уравнение прямой:
3.Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями хОу, уОz, xOz: пусть
Где t - некоторый параметр, тогда уравнения прямой можно записать так:
Подставим данные выражения в уравнение плоскости Q и найдем параметр t:
Подставим значение параметра t в уравнения и найдем координаты точки пересечения:
Итак, координаты точки P, точки пересечения полученной во втором пункте прямой и плоскости Q: Р.
Р1 - точка пересечения прямой с с хОу: z = 0;
P1 (2,6; 1,2; 0).
P2 - точка пересечения прямой с уОz: x = 0;
P2 (0; 1,6; 2,8).
Р3 - точка пересечения прямой с xOz: y = 0;
;
P3 (0,5; 0; 1,5).
Найти расстояние от точки М до плоскости Q:
т.к. прямая МР перпендикулярна плоскости Q, точка Р принадлежит плоскости Q, то расстояние между точками М и Р и будет расстоянием от точки М до плоскости Q.
Производная и дифференциал
Задание № 114
Найти пределы:
Разложим на множители и числитель и знаменатель:
Задание № 135
Функция у задана различными аналитическими выражениями для различных областей изменения аргумента х.
1. Найти точки разрыва функции, если они существуют.
Данная функция определена и непрерывна в интервалах ( При и меняется аналитическое выражение функции и только в этих точках функция может иметь разрывы.
Определим односторонние пределы в
Т.к. односторонние пределы в не совпадают, значит разрыв I рода.
Определим односторонние пределы в точке:
Т.к. односторонние пределы в точке совпадают, значит функция в точке непрерывна.
2. Найти скачок функции в точке разрыва:
точка разрыва
Задание № 198
Найти приближенное значение указанных величин с помощью дифференциалов соответствующих функций.
или
Задание № 156
Найти производные пользуясь формулами дифференцирования:
Задание №240
Исследовать функцию методами дифференциального исчисления.
Начертить график.
План исследования:
1.найти область существования функции;
2.исследовать на непрерывность, найти точки разрыва и её односторонние пределы в этих точках;
3. исследовать на четность, нечетность;
4. найти точки экстремума, интервалы возрастания, убывания функции;
5. найти точки перегиба, интервалы выпуклости и вогнутости;
6.асимптоты, если они есть;
7. построить график.
Задание № 272
Требуется поставить палатку в форме правильной четырехугольной пирамиды с заданной боковой поверхностью . Каковы должны быть размеры палатки (сторона а и высота h) чтобы вместимость палатки была наибольшей.
Решение:
Вместимость палатки - это объем палатки. Объем правильной пирамиды находится по формуле где а - сторона квадрата (основание пирамиды), h - высота пирамиды.
Выразим высоту пирамиды через сторону квадрата:
Подобные документы
Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.
контрольная работа [161,0 K], добавлен 16.03.2010Матричные уравнения, их решение и проверка. Собственные числа и собственные векторы матрицы А. Решение системы методом Жорданa-Гаусса. Нахождение пределов и производных функции, ее градиент. Исследование функции методами дифференциального исчисления.
контрольная работа [287,0 K], добавлен 10.02.2011Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа [1,1 M], добавлен 04.05.2010Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.
презентация [316,5 K], добавлен 14.11.2014Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация [642,7 K], добавлен 31.10.2016Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа [102,5 K], добавлен 04.12.2013Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа [797,4 K], добавлен 18.11.2013Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Нахождение длины ребер, углов между ними, площадей граней и объема пирамиды по координатам вершин пирамиды. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера, средствами матричного исчисления. Уравнение кривой второго порядка.
контрольная работа [330,3 K], добавлен 01.05.2012Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.
учебное пособие [1,5 M], добавлен 06.11.2011