Побудова зображень предметів на площині

Сутність методу проекціювання. Центральні та паралельні проекції. Переваги ортогонального проекціювання перед центральним та косокутним. Положення геометричної фігури в просторі і виявлення її форми по ортогональних проекціях. Закони побудови зображень.

Рубрика Математика
Вид реферат
Язык украинский
Дата добавления 11.11.2010
Размер файла 749,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Житомирський Військовий Інститут

Національного Авіаційного Уніврситету

Реферат

на тему:

Побудова зображень предметів на площині

Житомир 2010

Нарисна геометрія - наука, яка вивчає просторові форми та способи зображення їх на площині.

Основною задачею нарисної геометрії є вивчення методів побудови зображень просторових форм та в розробці способів рішення просторових задач за допомогою зображень.

Предмет, якій зображують називають оригіналом або моделлю. Креслення повинно містити геометричну інформацію про форму та розміри оригіналу. До такого креслення висуваються слідуючи основні вимоги:

– наочність, тобто давати просторове уявлення про модель;

– простота з точки зору графічного виконання;

– точність - графічні операції, які виконуються на кресленні, повинні давати точні рішення.

Для побудови зображень предметів на площині користуються методом проекціювання. Тому наступне питання - метод проекцій.

Сутність методу проекціювання

Отже, проекція - це зображення предмета, "відкинуте" на площину за допомогою променів. Спроекціювати предмет -- це означає зобразити його на площині (рис.1).

Залежно від положення проекціюючих променів проекції поділяють на центральні та паралельні.

Рис. 1

Ідею центрального проекціювання видно з рис.2. Точка S, з якої виходять проекціюючі промені, називається центром проекціювання. Площина р1 на яку проекціюється предмет, називається площиною проекцій. Площина р1 і точка S становлять апарат центральної проекції. Щоб спроекціювати трикутник, треба з центра проекцій S через усі його вершини провести проекціюючі промені до перетину з площиною проекцій р1. Одержимо точки А1В1С1, які називаються центральними проекціями вершин А, В, С на площину р1, а трикутник А1В1С1 - центральною проекцією трикутника ABC.

Метод паралельного проекціювання розглянемо за допомогою рис. 3. Як і в попередньому випадку, вибирають площину проекцій р1. Замість центра проекцій S задають напрям проекціювання s, тобто вважають, що центр проекцій S віддалений у нескінченність. Тому проекціюючі промені паралельні між собою. Площина р1 і напрям s становлять апарат паралельної проекції. Щоб спроекціювати трикутник ABC на площину р1, через вершини А, В, С проводять проекціюючі промені паралельно напряму проекціювання s. Внаслідок перетину цих променів з площиною р1 утворюється трикутник А1В1С1, який являє собою паралельну проекцію трикутника ABC.

Паралельні проекції поділяють на прямокутні і косокутні. Якщо проекціюючі промені перпендикулярні до площини проекцій (рис. 4), то таке проекціювання називають прямокутним, а проекції, які при цьому одержують -- прямокутними, або ортогональними. Якщо ж кут нахилу променів не дорівнює 90°, то такі паралельні проекції називаються косокутними. У кресленні користуються прямокутними проекціями.

Ортогональне проекціювання має ряд переваг перед центральним та косокутним паралельним проекціюванням:

– простоту геометричних побудов ортогональних проекцій предметів;

– зберігання на проекціях, при певних умовах, форми та величини лінійних та кутових розмірів проекціюючих предметів.

Побудова за заданими координатами епюрів прямих, взаємного положення прямих та прямих і точок.

Розглянемо просторову модель координатної площини проекцій. Для визначення положення геометричної фігури в просторі і виявлення її форми по ортогональних проекціях найбільш зручною є декартова система координат. Декартова система координат складається з трьох взаємно перпендикулярних площин.

р1 - горизонтальна площина проекцій;

р2 - фронтальна площина проекцій;

р3 - профільна площина проекцій.

Лінії перетину площин проекцій утворюють осі координат: X - вісь абсцис, Y - вісь ординат, Z - вісь аплікат, а точка перетину координатних осей O береться за початок координат.

р1 - горизонтальна площина проекцій; р2 - фронтальна площина проекцій;

Площини проекцій перетинаються по вісі координат Ох. Обертанням навколо вісі Ох площину р1 суміщають з площиною р2. Отримаємо комплексне креслення

Схему побудови зворотного ортогонального креслення розвинув Гаспар Монж - знаменитий французький учений. По схемі Монжа оригінал (наприклад точка) проекціюється ортогонально на дві взаємно перпендикулярні площини проекції р1 - горизонтальну і р2 - фронтальну площини проекцій.

Лінія зв'язку - це пряма, що з'єднує дві проекції точки на комплексному кресленні і перпендикулярна осі проекцій.

У результаті ми отримали двохпроекційне комплексне креслення точки А.

Твердження: Дві прямокутні проекції точки повністю визначають її положення в просторі основних площин проекцій.

Тобто комплексне креслення або епюр Монжа (з фр. «креслення») - це зображення, яке отримуємо в результаті обертання площини проекцій р1 на кут 90 до суміщення р2.

В кресленні ж при побудові зображень часто користуються трьома проекціями на три площини проекцій. Розглянемо, за якими законами це реалізується.

А1 - горизонтальна та А2 - фронтальна проекції точки А. Проекціюючі промені АА1 та АА2 перпендикулярні відповідним площинам проекцій. Точки перетину проекціюючої площини з віссю Ох позначена АХ. На комплексному кресленні горизонтальна А1 та фронтальна А2 проекції точки А з'єднуються вертикальною лінією проекційного зв'язку, яка вісі Ох .

Для переходу до комплексного креслення просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: р1 обертають навколо вісі Ох, р3 обертають навколо вісі Оz до їх спів падання з р2 .Вісь Оу розпадається на дві вісі у1 та у3

Проекціюючі промені АА1, АА2 та АА3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А: горизонтальну А1, фронтальну А2 та профільну А3. Точки перетину проекціюючих площин з відповідними осями позначені АХ , АY , АZ.

На комплексному кресленні лінії проекційного Проекціюючі промені АА1, АА2 та АА3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А: горизонтальну А1, фронтальну А2 та профільну А3. Точки перетину проекціюючих площин з відповідними осями позначені АХ , АY , АZ.

На комплексному кресленні лінії проекційного зв'язку осям координат. Лінія А1А2 Ох розташована вертикально, а А2А3 Оz - горизонтально. При побудові лінії проекційного зв'язку від А1 до А3 необхідно зберігати рівність координатних відрізків по осі Оу : АХА1 = АZА3

Для переходу до просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: р1 обертають навколо вісі р3 обертають навколо вісі Оz до їх спів падання з р2 .Вісь Оу розпадається на дві вісі у1 та у3

Перпендикуляр АА1 називається горизонтально-проекціюючим, АА2 - фронтально-проекціюючим і АА3 - профільно-проекціюючим променем.

На комплексному кресленні чисельні значення координат відкладаються вздовж відповідних координатних осей. Кожна проекція точки визначається двома координатами: горизонтальна - ХА та YА, фронтальна - ХА та ZА, профільна - YА та ZА.

Горизонтально конкуруючі точки А та В лежать на одному горизонтально - проекціюючому промені, тому їх горизонтальні проекції співпадають. Точка В віща за точку А та розташована ближче до спостерігача, тому горизонтальна проекція В1 буде видимою.

Фронтально конкуруючі точки А та В відрізняються координатою у, лежать на одному фронтально - проекціюючому промені, тому їх фронтальні проекції співпадають. Ближче до спостерігача розташована точка В, тому її фронтальна проекція В2 буде видимою.

До сих пір ми розглядали проекції точки, а зараз розглянемо комплексне креслення лінії. Пряма в просторі безмежна. Обмежена частина прямої називається відрізком.

По розташуванню відносно площин проекцій прямі можуть бути загального та частинного положень.

Прямою загального положення є пряма, яка не паралельна жодній з площин проекцій.

Розглянемо схему побудови ортогонального креслення прямої лінії. Проекціювання прямої зводиться до побудови проекцій будь-яких двох її точок, так як дві точки повністю визначають положення прямої в просторі.

Наприклад візьмемо пряму m загального положення (рис. 12), яка задана двома точками А і В. Побудуємо ортогональні проекції відрізку АВ на площинах р12, р3. З'єднаємо проекції точок А і В на кожній площині отримаємо проекцію відрізку АВ на всі три проекціюючі площини.

Комплексне креслення відрізку прямої АВ загального положення на всі три площини проекції наведено на рис. 13.

Положення прямої m в просторі визначають дві довільні точки А та В, які лежать на цій прямій. Пряма лінія m є заданою, якщо на комплексному кресленні побудувати проекції двох її точок А та В. Проекції прямої m проходять через пари відповідних проекцій точок: горизонтальна проекція прямої m1 - через А1 та В1 ; фронтальна проекція прямої m2 - через А2 та В2

Якщо відрізок АВ загального положення (рис. 14) продовжити в обидва боки від точок А і В, то в точках М і N він перетне площини проекцій р1 і р2.

Пряма, яка паралельна якій-небудь площині проекцій, не може мати сліду на тій площині, якій вона паралельна, так як вона з нею не перетинається.

Пряма частинного положення (або пряма рівня) - називається пряма, паралельна хоч би одній з площин проекцій.

Проекціюючими називаються прямі, перпендикулярні до однієї з площин проекцій, тобто паралельні двом іншим площинам.

Рис. 16

Слід прямої - це точка перетину прямої з відповідною площиною проекцій. Точка М -- горизонтальний слід прямої АВ, вона має аплікату zМ = 0, а точка N - фронтальний слід прямої АВ, вона має аплікату yN = 0.

Для побудови горизонтального сліду прямої АВ знайдемо на ній точку М з координатою z = 0, перетин фронтальної проекції прямої А2В2 з віссю х визначає фронтальну проекцію сліду М2. Горизонтальна проекція сліду М1 належить горизонтальній проекції прямої.

Для побудови фронтального сліду прямої АВ знайдемо на ній точку N з координатою у = 0, перетин горизонтальної проекції прямої А1В1 з віссю х визначає горизонтальну проекцію сліду N1. Фронтальна проекція сліду N2 належить фронтальній проекції прямої.


Подобные документы

  • Геометричні фігури, що розглядаються в планіметрії - розділі геометрії, в якому вивчають фігури на площині. Визначення кута, трикутника, квадрата, чотирикутника, ромба, паралелограма, трапеції, багатокутника та їх площ античними та сучасними методами.

    реферат [34,7 K], добавлен 02.05.2010

  • Способи завдання площини на кресленні та її сліди. Положення площини у просторі відносно площин проекцій. Пряма та точка в площині, прямі особливого положення в площині. Взаємне розташування площин. Пряма, паралельна площині, перетин прямої з площиною.

    реферат [1,2 M], добавлен 11.11.2010

  • Теорема Піфагора - важливий інструмент геометричних обчислень, її простота, значення; історичні відомості. Теорема Піфагора на площині та у просторі, її стереометричний аналог; цілочислові прямокутні трикутники. Доведення теореми, класифікація задач.

    курсовая работа [2,5 M], добавлен 16.05.2011

  • Визначення поняття інверсії на площині, її властивості. Виведення формул аналітичного задання інверсії на площині. Побудова образу точок, прямих і кіл, властивості кутів і відстаней між точками при інверсії. Ортогональні і інваріантні окружності інверсії.

    курсовая работа [1,2 M], добавлен 27.09.2013

  • Вивчення стандартних видів аксонометричних проекцій, які застосовуються як допоміжні до комплексних креслень у тих випадках, коли необхідне пояснююче наочне зображення форми деталей. Ізометрія, диметрія, способи їх побудови (осі, коефіцієнти спотворень).

    реферат [810,0 K], добавлен 13.11.2010

  • Наочне представлення про об'єкт та його зображення в тривимірному просторі. Порядок тривимірний зміни масштабу фігури, її зсуву та обертання. Особливості відображення елементів у просторі, просторовий перенос та тривимірне обертання навколо довільної осі.

    лабораторная работа [701,4 K], добавлен 19.03.2011

  • Елементарний математичний апарат плоских геометричних проекцій. Ортографічне косокутне проектування на площину, застосування матриць. Розгляд проекцій картинної площини в лівосторонній системі координат спостерігача, погодження з екраном дисплея.

    лабораторная работа [233,0 K], добавлен 19.03.2011

  • Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.

    контрольная работа [128,1 K], добавлен 22.01.2011

  • Побудова математичної логіки як алгебри висловлень і алгебри предикатів. Основні поняття логіки висловлювань та їх закони і нормальні форми. Основні поняття логіки предикатів і її закони, випереджена нормальна форма. Процедури доведення законів.

    курсовая работа [136,5 K], добавлен 27.06.2008

  • Рівняння площини, яка проходить через задану точку перпендикулярно заданому вектору. Опис прямої лінії у просторі. Взаємне розташування прямої та площини. Поверхні другого порядку. Параметричні рівняння ліній. Приклади їх побудови в полярних координатах.

    лекция [252,5 K], добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.