Интегралы, объем тела вращения, метод наименьших квадратов
Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.05.2004 |
Размер файла | 25,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.
контрольная работа [166,9 K], добавлен 28.03.2014Исследование заданной функции и построение ее графика. Расчет объема тела, полученного вращением вокруг оси абсцисс фигуры, ограниченной линиями и осями координат. Вычисление интеграла при заданной силе. Работа, которую нужно совершить для сжатия пружины.
контрольная работа [425,4 K], добавлен 18.10.2010Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций [514,0 K], добавлен 31.05.2010Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация [308,0 K], добавлен 30.05.2013Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа [77,3 K], добавлен 11.07.2013Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.
контрольная работа [73,0 K], добавлен 24.04.2013Решение задач по геометрии. Составление кроссвордов на тему "Тела и фигуры вращения". Математика и история. Модель "Седла" - пример криволинейной поверхности. Изучение основных тел. Движение твердого тела вокруг неподвижной точки. Теорема Пифагора.
творческая работа [688,6 K], добавлен 13.04.2014Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.
контрольная работа [131,9 K], добавлен 14.12.2012Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.
курсовая работа [501,8 K], добавлен 12.06.2014Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.
реферат [1,4 M], добавлен 09.01.2012