Частные производные. Экстремумы функций

Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 14.01.2015
Размер файла 61,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.

    контрольная работа [1,1 M], добавлен 12.11.2014

  • Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.

    реферат [145,4 K], добавлен 03.08.2010

  • Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.

    контрольная работа [204,5 K], добавлен 06.05.2012

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

    контрольная работа [90,0 K], добавлен 24.10.2010

  • Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.

    контрольная работа [134,7 K], добавлен 09.04.2015

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.

    презентация [126,2 K], добавлен 17.09.2013

  • Исследование функции на непрерывность. Алгоритм вычисления производных первого и второго порядков. Порядок определения скорости и ускорения в определенный момент времени при помощи производных. Особенности исследования функции на наличие точек экстремума.

    контрольная работа [362,7 K], добавлен 23.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.