реферат  Степенные ряды

Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

####### #######    #    #####     #   
#    #  #         ##   #     #   ##   
    #   #        # #         #  # #   
   #    ######     #    #####     #   
  #           #    #   #          #   
  #     #     #    #   #          #   
  #      #####   ##### #######  ##### 
                                      

Введите число, изображенное выше:

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.06.2010
Размер файла 89,3 K

Подобные документы

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация [86,5 K], добавлен 18.09.2013

  • Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

    контрольная работа [131,9 K], добавлен 14.12.2012

  • Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.

    курсовая работа [1,3 M], добавлен 21.05.2019

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка [96,6 K], добавлен 25.12.2010

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.

    дипломная работа [252,1 K], добавлен 15.12.2012

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.

    курсовая работа [586,9 K], добавлен 19.04.2011

  • Метод степенных рядов, применяемый для суммирования расходящихся рядов. Формулировка Пуассона, теорема Абеля. Метод средних арифметических и метод Чезаро. Знакопостоянный ряд натуральных чисел. Взаимоотношение между методами Пуассона-Абеля и Чезаро.

    реферат [313,4 K], добавлен 11.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.