дипломная работа Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку
Поняття приватного інтеграла. Побудова квадратичних двовимірних стаціонарних систем із приватним інтегралом у вигляді параболи, окружності або гіперболи. Умови існування в системи двох часток інтегралів. Якісне дослідження побудованих класів систем.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | дипломная работа |
Язык | украинский |
Дата добавления | 14.01.2011 |
Размер файла | 290,0 K |
Подобные документы
Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
презентация [787,6 K], добавлен 17.01.2015Дослідження системи з відомим типом крапок спокою. Знаходження першого інтеграла системи, умови його існування. Застосування теореми про еквівалентність диференціальних систем. Визначення вложимої системи, умови вложимості. Поняття функції, що відбиває.
курсовая работа [115,3 K], добавлен 14.01.2011Аналіз рівняння еліпсоїда, властивостей кривих і поверхонь другого порядку. Канонічне рівняння гіперболи за допомогою перетворень паралельного переносу й повороту координатних осей. Дослідження форми поверхні другого порядку методом перетину площинами.
курсовая работа [137,1 K], добавлен 27.12.2010Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.
курсовая работа [1,9 M], добавлен 13.11.2012Поняття подвійного та потрійного інтегралів. Кратні інтеграли в криволінійних координатах. Геометричні й фізичні додатки кратних інтегралів. Криволінійні й поверхневі інтеграли. Спосіб обчислення криволінійного інтеграла першого та другого роду.
курсовая работа [278,9 K], добавлен 14.01.2011Означення і основні властивості інтеграла Стілтьєса, його зв’язок, особливості і відмінності від інших визначених інтегралів і загальні умови існування. Приклади застосування інтеграла для розв’язку різних класів задач. Узагальнення інтегралу Рімана.
курсовая работа [370,2 K], добавлен 21.05.2009Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.
курсовая работа [378,9 K], добавлен 26.12.2010Вивчення елементарних функцій, інтеграли від яких не є елементарними функціями, тобто вони не обчислюються в скінченному вигляді або не 6еруться. Наближені методи обчислення визначених інтегралів. Дослідження невласних інтегралів та ознаки їх збіжності.
реферат [1,1 M], добавлен 18.07.2010Поняття криволінійного інтеграла першого роду (по довжині дуги). Обчислення криволінійних інтегралів першого роду. Застосування криволінійного інтеграла першого роду. Фізичний зміст та поняття криволінійного інтеграла другого роду (по координатах).
реферат [535,9 K], добавлен 10.03.2011Введення поняття інтеграла Стільєса та його розробка. Визначення проблеми моментів. Загальні умови та класи випадків існування інтеграла Стільєса. Теорема про середній. Застосування інтеграла Стільєса в теорії ймовірностей та у квантовій механіці.
дипломная работа [797,1 K], добавлен 25.02.2011