Построение функций предпочтения при произвольном базовом многокритериальном объекте. Частная нормированная функция предпочтений и принципы ее коррекции. Функциональные требования и описание логической структуры данной функции, анализ работы приложения.
Назначение, состав и структура арифметическо-логических устройств, их классификация, средства представления. Принципы построения и функционирования АЛУ ЭВМ. Создание блок-схемы алгоритма умножения, определение набора управляющих сигналов, схемное решение.
Теория случайных графов, модели сетей (графы Барабаши-Альберт, Эрдеша-Реньи, Уотса-Строгатса и др.) Разработка ускоренного алгоритма калибровки больших сетей по коэффициенту кластеризации на языке Java в среде Eclipse. Анализ экспериментальных данных.
Основные понятия теории течения жидкости. Создание математической модели распределения температурного поля в вязкой жидкости. Разработка цифровой модели изменения поля температуры в зависимости от: теплопроводности жидкости и металла, граничных условий.
Понятие и задачи контрольной работы, ее основные достоинства и недостатки. Теоретические вопросы, выносимые на контроль на тему "Векторный метод в решении задач". Демонстрационный вариант контрольной работы по алгебре. Определение уровня знаний студентов.
Методика определения значения коэффициента трансцилляторного переноса, который появляется в результате колебания давления при пороховом воздействии. Математическая постановка волновой задачи в нулевом приближении в пространстве изображений Фурье.
- 2197. Разработка методических рекомендаций решения некоторых стереометрических задач векторным методом
Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.
Структура и содержание учебно-методического пособия. Наполнение разделов "Операции с большими числами", "Вероятностные тесты на простоту", "Доказуемо простые числа". Разработка заданий для лабораторных и самостоятельных работ. Тесты для самопроверки.
Общие сведения об элементарных функциях. Схема исследования функции и построения ее графика. Линейная, степенная, показательная, логарифмическая и тригонометрические функции. Простейшие преобразования графиков: параллельный перенос, деформация, отражение.
Как высшая математика разрешает философские парадоксы. Математика в апориях Зенона. Точная математическая формулировка интуитивного физического или метафизического понятия непрерывного движения. Попытки избавления от допущений в математических выкладках.
Прогрессии многочленов и их матриц. Описание вертикальных рядов. Построение алгебраической трапеции из ограниченного количества чисел ряда последовательности. Свободные члены выражений. Особенности разрешимости Диофантовых уравнений. Расшифровка формул.
Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
Алгоритм построения ранговой оценки неизвестных параметров регрессии. Моделирование регрессионных зависимостей с погрешностями, имеющими распределения с "тяжёлыми" хвостами. Вычисление асимптотической относительной эффективности рангового метода.
Словесная, математическая постановка исходной задачи. Исследование математической задачи на корректность. Применение метода экспертных оценок и парных сравнений основных объективных, субъективных факторов, послуживших причиной к поступлению учиться в МАИ.
Характарыстыка тоеснага пераўтварэнні, у выніку якога мнагачлена пераўтворыцца ў твор некалькіх сомножителей. Разгляд асноўных спосабаў раскладання мнагачлена на множнікі: вынясенне агульнага множніка, формулы скарочанага множання, спосаб групоўкі.
Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
Метод потенциальных функций, его использование для решения задач обучения машин распознаванию образов. Основные понятия: признаки объекта, пространство рецепторов. Алгоритмы, основанные на методе потенциалов. Потенциалы в пространстве рецепторов.
Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.
Использование вероятностной модели для описания неопределенностей. Распределение Пирсона, Стьюдента и Фишера при статистической обработке данных. Использование "Хи-квадрата" при оценивании дисперсии, проверке гипотез согласия качественных переменных.
- 2212. Распределение данных
Измерение прочности металла контрольных образцов, снятых с дисков турбин авиадвигателя. Основные статистические характеристики распределения данных. Значимость отклонения от нуля коэффициентов асимметрии и эксцесса с заданным уровнем значимости.
- 2213. Распределение Пуассона
Числовые характеристики положения о распределении Пуассона и разброса. Асимметрия и эксцесс распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра. Пример условия, при котором возникает распределение Пуассона.
- 2214. Распределение Пуассона
Распределение случайной величины c помощью закона Пуассона. Вычисления математического ожидания и дисперсии. Метод наибольшего правдоподобия. Асимметрия распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра.
Теория вероятности – математическая наука, изучающая закономерности в случайных явлениях. Метод наибольшего правдоподобия. Доверительные оценки. Точечные оценки и критерий согласия. Теорема Чебышева. Распределение Пуассона. Доверительный интервал.
Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.
Тeopия вepoятнocти как мaтeмaтичecкaя нaукa, изучaющaя зaкoнoмepнocти в cлучaйных явлeниях. Oпpeдeлeниe зaкoнa Пуaccoнa. Ocнoвныe принципы pacпpeдeлeния случайных величин и его дoпoлнитeльныe хapaктepиcтики. Cвязь c бинoминaльным pacпpeдeлeниeм.
Описание подходов к построению динамической модели технологического процесса, этапы и направления данного процесса, ее конкретное представление. Аппроксимация заданных уравнений и оценка полученных результатов, решение и математическое значение.
Нахождение вероятности того, что наудачу взятое натуральное число не делится. Построение гистограммы для изображения интервальных рядов, расчет средней арифметической дискретного вариационного ряда, среднего квадратического отклонения и дисперсии.
Сравнительный анализ вероятностей катастрофы летательного аппарата, ее сравнение с вероятностями, связанными с дублирующими системами, с отказами двигателей и вспомогательных подсистем. Определение надежности элементов системы энергоснабжения самолета.