Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
Описания доказательства вреда курения с помощью математических вычислений. Анализ развития вычислительных способностей учащихся, памяти, сообразительности. Нахождение процентов от числа и их выражения десятичной дробью, выполнение заданий на внимание.
Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.
Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
Исследование функции на непрерывность. Алгоритм вычисления производных первого и второго порядков. Порядок определения скорости и ускорения в определенный момент времени при помощи производных. Особенности исследования функции на наличие точек экстремума.
Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.
Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
Сущность и содержание способа пропорций, определение вида зависимости. Обозначение неизвестного числа в пропорции буквой Х. Запись условий задачи в виде таблицы. Поиск неизвестного члена пропорции. Составление дополнительных пропорций для решения задачи.
- 2292. Решение задачи в LINDO
Составление оптимального плана посева зерновых культур по участкам. Отображение изменения решения, если весь второй участок засеять пшеницей, ячменем или кукурузой с нижним уровнем затрат. Расчет прибыли от продажи урожая, возможности ее максимизации.
Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.
Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.
- 2296. Решение задачи Коши
Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
Основные методы Рунге-Кутта: построение класса расчетных формул. Расчетная формула метода Эйлера. Получение различных методов Рунге-Кутта с погрешностью второго порядка малости при произвольном задавании параметров. Особенности повышения порядка точности.
Составление плана выпуска продукции с целью получения максимальной прибыли при ее реализации. Вид и запас сырья, прибыль от единицы продукции и общее количество. Приведение системы ограничений к каноническому виду. Составление симплексной таблицы.
Методы исследования операций для количественного анализа сложных целенаправленных процессов. Решение задач методом полного перебора и оптимальной вставки (определение всевозможных расписаний, их очередности, выбор оптимального). Генератор исходных данных.
Понятие кватернионов: свойства, замена матрицами, геометрическая и тригонометрическая интерпретации. Изучение обтекания кругового цилиндра в идеальной жидкости, создание программы для визуализации задачи, ее решение в комплексной форме в квартернионах.
Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.
Суть проблемы повышения надежности резервирования компонентов стендовой информационно-управляющей системы для проведения огневых испытаний жидкостных ракетных двигателей. Основы теории надежности. Математическая модель выбора вариантов резервирования.
Предмет и задачи исследования операций. Основные понятия и принципы исследований, математические модели. Детерминированная задача согласования по определению минимального времени выполнения комплекса работ, времени начала и окончания каждой операции.
Теоретические положения симплекс-метода и постоптимального анализа. Построение математической модели задачи. Нахождение ценностей ресурсов. Определение относительных и абсолютных диапазонов изменения уровней запасов дефицитных и недефицитных ресурсов.
Историческая справка об иррациональных уравнениях. Решение иррациональных уравнений. Преобразование иррациональных выражений. Уравнения с радикалом третьей степени. Введение нового неизвестного.
Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
Графы - определение и примеры. Задачи на нахождение всех комбинаций партий в шахматы между игроками, выбора нужной марки для письма, составления двузначного кода из возможных четырех цифр, расположения заданного количества гостей на разноцветных стульях.
Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.