Исследование функциональных последовательностей и рядов в вузе
Теоретические основы изучения темы математического анализа "Функциональные последовательности и ряды", психолого-педагогические аспекты и методические рекомендации. Определения равномерной сходимости функциональных рядов, их почленное интегрирование.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.06.2011 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для реализации приведённой системы знаний студентам предлагаются различные средства. В частности, "Методические рекомендации к практическим занятиям и самостоятельной работе", "Сборник задач по математическому анализу" [8], [9].
Эти методические пособия помогают студентам организовать свою работу как на практических занятиях, так и при работе во внеаудиторное время.
Сборник задач и методические рекомендации к практическим занятиям предусматривают разбиение учебного материала на темы, изучение которых предусмотрено Государственным стандартом и учебной программой по математическому анализу. Каждое практическое занятие разбито на ряд вопросов, помогающих студентам самостоятельно работать при подготовке к практическим занятиям и лекциям. Это такие вопросы как:
План занятия. Здесь более подробно обозначены вопросы, изучаемые в данной теме.
Задания. Первая группа заданий подготавливает студентов к восприятию нового материала. Вторая группа - это задания по усвоению и закреплению изученного.
Вопросы для самоконтроля. Этап самооценки и самоконтроля является очень важным в процессе самообразовательной деятельности. Поэтому наличие этого пункта даёт возможность студентам оценить результаты своей работы, соотнести их с базовым уровнем, а так же позволяет усваивать не только материал практического плана, но и теоретические аспекты этих методов, то есть способствует фундаментализации знаний.
Помимо методических рекомендаций в печатном виде, для более успешной адаптации студентов преподаватель на каждом занятии проводит специальный инструктаж, который состоит из следующих элементов:
предложение выполнить задание по аналогии;
объяснение выполнение задания на двух-трёх примерах;
разбор наиболее трудных элементов домашнего задания.
Знания и умения, которые формируются у студентов в ходе изучения математического анализа достигают наибольшего эффекта при следующих основных условиях, эти условия могут быть созданы только при непосредственном участии и работе самих студентов.
Чёткое определение цели деятельности в смысле результата действий и цели упражнения.
Ясное представление техники выполнения действий, т.е. образца, которого следует достичь.
Понимание правил и последовательности выполнения действий, направленных на достижение целей.
Постоянный самоконтроль качества действий путём сличения их результатов со сложившимися в представлении или по зрительно воспринимаемым образцам.
Своевременное обнаружение отклонений, ошибок и брака в действиях при следующих повторениях этих действий.
Правильная самооценка успехов в достижении конкретной деятельности и цели упражнений в смысле совершенствования осваиваемых действий.
Следовательно, нужны, во-первых, система и последовательность упражнений; во-вторых, разумное их распределение во времени; в-третьих, необходима постоянная актуализация в самообразовательной деятельности студентов по переносу знаний и умений в новую ситуацию; в-четвёртых, активизация опыта по решению задач и преобразования ранее усвоенных способов деятельности.
Организационно-управленческие умения, которые необходимы студентам для самостоятельной деятельности по математическому анализу, особенно во внеурочное время, и которые повышают готовность к самообразованию:
умение намечать и принимать к исполнению задачи, основные пути поиска и усвоение учебного материала;
навыки планирования учебного труда, распределение усилий и времени для решения этих задач;
умение оценивать достигнутые результаты и ставить новые задачи.
Планирование практических занятий можно построить на основе разработанной академиком В.М. Монаховым технологической карты (см. технологическую карту по теме "Функциональные последовательности и ряды") [16].
В данной карте приводятся некоторые цели, которые могут быть поставлены на практическом занятии (I столбик), облегчающие планирование занятия.
Во II столбике представлены примеры заданий, решение которых приводит к достижению поставленной цели, т.е. этот материал можно рассматривать как содержание практических занятий и домашних работ в том числе.
III столбик назван "Коррекцией". В ней изложены типичные ошибки и возможные затруднения, возникающие при решении заданий по данной теме
со стороны студентов. Учитывая их, легко наметить пути преодоления этих ошибок и затруднений, провести “профилактическую" работу для их недопущения.
Поэтому, учебная программа и технологическая карта должны стать “настольным пособием” по теме "Функциональные последовательности и ряды" для преподавателей вузов.
Логическая структура учебного процесса |
Технологическая карта Тема "Функциональные ряды" |
Курс: 2 |
|
Целеполагание |
Диагностика |
Коррекция |
|
Ц 1: Освоить по-нятия функцио-нального ряда, его суммы и сходи-мости. Ц 2: Освоить по-нятие равномер-ной сходимости функционального ряда. Ц 3: Освоить по-нятия почленного интегрирования и дифференцирова-ния функциональ-ного ряда. |
Д 1: 1) Найдите область сходимости функционального ряда 2) Исследовать сходимость функционального ряда в точках х=1 и х=2. 3) Найти сумму ряда Д 2: 1) Показать, что ряд cходится равномерно на отрезке [-1; 1]. |
I Типичные ошибки: при нахождении сум-мы ряда (Ц1); при исследовании границ области сходи-мости Ц1, Ц2; при исследовании ряда на интегрируемость и дифференцируемость (Ц3). II Возможные затруднения: при определении области сходимости функциональ-ного ряда (Ц1); при подборе числового ряда для доказа-тельства равномерной сходимости (Ц2); при использовании свойств, связанных с дифференцированием и интегрированием ря-дов (Ц3). |
|
2) Пользуясь признаком Вейерштрасса, доказать равномерную сходимость функционального ряда Д 3: 1) Показать, что ряд можно интегрировать в любом интервале. 2) Показать, что к ряду можно применить теорему о дифференцировании функциональных рядов. |
§7. Электронное пособие по теме “Функциональные последовательности и ряды"
В процессе выполнения данной выпускной квалификационной работы было создано электронное пособие по теме "Функциональные последовательности и ряды". Обучающая часть пособия представлена в формате HTML, а контролирующая - на языке DELFI.
При создании обучающей программы пособия (совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии объекта, процесса или явления) были поставлены задачи: основная задача - создание обучающей программы, которая способствовала бы формированию общих представлений о функциональных последовательностях и рядах, а конкретно, об области сходимости, и видах сходимостей функциональных последовательностей и рядов.
Второстепенные задачи:
Создание текстовых файлов теории, примеров, а также процедур, подключающих эти файлы.
Программа должна быть удобной в использовании. Для этого вся работа должна разбиваться на окна, каждое из которых имело бы свое отдельное меню.
Предусмотрение контролирующей системы, с помощью которой каждый пользователь смог бы проверить усвоенный им материал и сразу же получить результат в виде оценки.
Выработка устойчивости программы к ошибкам и некорректным действиям пользователя.
Цветовое оформление программы, разборчивость и четкость изображений, разнообразное расположение текста на экране.
При создании электронного пособия придерживались принципа модульности. Для этого была построена структурная схема, соответствующая поставленной задаче. Она состоит из следующих блоков:
заставка; несет информацию о названии изучаемой темы.
основное меню программы; последнее состоит из следующих компонентов:
1. Набранные в электронном виде фондовые лекции по теме "Функциональные последовательности и ряды", содержат необходимый и достаточный для изучения теоретический материал по данной теме. А именно:
Основные понятия (функциональная последовательность, функцио-нальный ряд, область сходимости функционального ряда, предельная функция. Равномерно сходящийся функциональный ряд, мажорантный ряд);
Определения сходящихся функциональных последовательности и ряда;
Критерий Коши равномерной сходимости функциональных последовательности и ряда;
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса);
Свойства равномерно сходящихся функциональных последовательностей и рядов;
Теоремы о почленном интегрировании функциональных последовательностей и рядов;
Теоремы о почленном дифференцировании функциональных последовательностей и рядов [11].
2. Практика 1. Первое в III семестре практическое занятие по теме "Функциональные ряды". Проводится ознакомление с понятиями функциональной последовательности и функционального ряда, сходимости и области сходимости функциональных рядов, суммы функционального ряда. Рассмотрено 3 типовых примера и по каждому примеру предложено соответственно 10, 5 и 3 задания для самостоятельного решения.
3. Практика 2. Пользователь знакомится с понятиями равномерной сходимости функциональной последовательности и рядов, признаком Вейерштрасса равномерной и абсолютной сходимости функционального ряда. Приведено 2 примера на доказательство равномерной сходимости функционального ряда на промежутке с помощью определения равномерной сходимости и признака Вейерштрасса соответственно. Предложено по 8 заданий для самостоятельного решения.
4. Практика 3. Рассмотрены теоремы о свойствах равномерно сходящихся функциональных последовательностей и рядов, о почленном интегрировании и дифференцировании функциональных последовательностей и рядов. Приведено 3 типовых примера (исследование ряда на интегрируемость и дифференцируемость и нахождение суммы ряда с помощью теорем о почленном интегрировании и дифференцировании функционального ряда). Предложено соответственно 5, 5 и 3 заданий по соответствующим темам для самостоятельного решения.
5. Тест. Представляет собой контрольную работу по проверке домашнего задания к практике 1. Рекомендуется проводить вначале следующего практического занятия. По своей структуре тест представляет собой основную форму от которой можно перейти к блокам:
Тест непосредственно. Этот блок открывается только после введения кода, что гарантирует достоверность информации об усвоении знаний. Тестирование студент может пройти только после того как занесет свои данные в компьютер. После прохождения теста выдается результат, который автоматически заносится в журнал.
Журнал результатов. Содержит информацию о результате тестирования и дате его прохождения. Данные могут стираться и распечатываться. Доступ к журналу имеет только преподаватель.
6. Историческая справка. Рассматривает исторические данные по разделу математического анализа "Ряды". Здесь описываются работы Архимеда, Ньютона, Эйлера, Меркатора, Лейбница, Грегори, Бернулли, Тейлора и других известных математиков.
Описанные компоненты электронного пособия могут добавляться, изменяться или заменяться в ходе обучения. Таким образом предоставляются большие возможности для личностной творческой работы. Преподаватель и студенты могут участвовать в составлении собственного электронного пособия, в добавлении к нему материалов или заданий без существенных затрат на переиздание. В "бумажных" учебниках такая возможность не предусмотрена, конструирование студентами личностного содержания образования затруднено. Максимально, что может сделать студент, это оставить на полях "бумажного" учебника свои пометки. Электронное пособие предоставляет возможность внесения в него изменений преподавателем. Преподаватель может быстро добавить в пособие свежие данные или те материалы, которые он нашел в других электронных библиотеках, книгах или в сети Интернет.
§8. Разработка практических занятий
Практическое занятие №1
Тема: "Функциональные последовательности и ряды"
Тип занятия: практикум решения задач.
Форма занятия: комбинированная между коллективной и фронтальной.
Средства обучения на занятии: сборник задач, методические рекомендации к практическим занятиям, телевизор, подключенный к компьютеру, графопроектор, доска, мел.
Цель: закрепление знаний, полученных на лекции, применение их на практике.
Методы: словесные, наглядные, по дидактической цели - познавательные, по характеру познавательной деятельности - проблемные.
Ход занятия:
Организационная часть: Студентам сообщается тема практического занятия, его цель, проверка присутствующих (3 минуты).
Основная часть: Проводится фронтальный опрос теоретического материала по изучаемой теме (12 минут). Ознакомление с новым материалом, первичное закрепление и осмысление (70 минут). Затем, подведение итогов и постановка домашнего задания. (5 минут).
Конспект занятия
Преподаватель: Тема сегодняшнего занятия: "Функциональные последовательности и ряды". Цель - приобрести навыки решения задач по вышеуказанной теме. На лекции вы познакомились с понятием функциональных последовательности и ряда, кроме того, вам была предоставлена возможность самостоятельно, с помощью электронного учебника по теме "Функциональные последовательности и ряды" познакомиться с историей развития функционального ряда. Ну, а теперь перейдем непосредственно к практическим вопросам по вышеуказанной теме и для начала проверим домашнее задание.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1: Сформулировать определение функциональной последовательности.
Ответ: Определение №1. Пусть дана последовательность функций . Причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается [14].
Вопрос 2: Определить, что называют предельной функцией последовательности ?
Ответ: Определение №2. Функция называется предельной функцией последовательности , если выполняется утверждение .
Вопрос 3: Дать понятия функционального ряда и его области сходимости.
Ответ: Определение №3. Ряд, элементами которого являются функции одной и той же переменной , заданной в области:
называется функциональным рядом.
Определение №4. Совокупность всех значений переменной , при которых функции определены и ряд сходится, называют областью сходимости функционального ряда.
Областью сходимости функционального ряда чаще всего служит какой-нибудь промежуток оси .
Вопрос 4: Что называют суммой функционального ряда?
Ответ: Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумму такого ряда представляет собой некоторую функцию переменной : . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка
[14].
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради. При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" (см. Гл. II, §6), в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Практические задания должны рассматриваться по принципу "от простого к сложному". Вначале необходимо выполнить упражнения на исследование сходимости функционального ряда в точке. Такого вида упражнения помогают студентам обнаружить взаимосвязь числового и функционального рядов, а также лучше понять "природу" функционального ряда. Пример №1 (№338 из [7], с комментариями преподавателя).
Дан функциональный ряд:
,
исследовать его сходимость в точках и .
Решение
В точке получаем числовой положительный ряд
.
Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости положительного числового ряда:
,
так как , то числовой положительный ряд расходится. А значит, заданный функциональный ряд расходится в точке .
В точке получаем числовой положительный ряд:
.
Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости положительного числового ряда:
,
так как , то числовой положительный ряд сходится. Следовательно, функциональный ряд сходится, причем абсолютно, в точке .
Ответ: Функциональный ряд сходится абсолютно при и расходится при . Пример №2 (№345 из [7], студент решает у доски самостоятельно). Дан функциональный ряд:
.
Исследовать его сходимость в точках , и .
Решение
При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
При ряд примет вид . числовой положительный ряд. По признаку Даламбера сходимости числового положительного ряда имеем: , т.е. ряд сходится. Значит, исходный функциональный ряд сходится в точке абсолютно.
Ответ: Заданный функциональный ряд сходится абсолютно в точке и расходится в точках и .
Пример №3 (№1 из [10], с комментариями преподавателя).
Найти область сходимости функционального ряда:
.
Решение
I способ.
Найдем общий элемент заданного функционального ряда:
Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .
Значит, область сходимости исходного функционального ряда: .
Проверим сходимость исходного функционального ряда при и .
Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Итак, область абсолютной сходимости исходного функционального ряда - .
II способ.
Определим и заданного ряда: , .
По признаку Даламбера абсолютной сходимости функционального ряда можно записать:
.
Если , т.е. , то заданный функциональный ряд сходится абсолютно.
Исследуем на сходимость исходный функциональный ряд при и .
Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Ответ: область абсолютной сходимости исходного функционального ряда - .
Пример №4 (№339 из [7], с комментариями преподавателя).
Найти область сходимости функционального ряда:
.
Решение
Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.
Если , то получается числовой положительный ряд вида . Он является расходящимся, так как , следовательно, .
Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии . Для убывающей геометрической прогрессии , , при .
Значит, ряд сходится при .
Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов - .
Ответ: Область сходимости заданного функционального ряда - .
Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.
Пример №5 (№2 из [10], студент у доски с помощью преподавателя).
Найти область сходимости функционального ряда:
Решение
Определим формулу общего элемента заданного функционального ряда N.
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е. , то заданный функциональный ряд сходится абсолютно.
При , т.е. , исследуемый функциональный ряд расходится.
При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом .
При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .
По признаку Лейбница: а) ; б) , так как .
Значит, ряд сходится условно по признаку Лейбница.
Составим ряд из абсолютных величин членов ряда . Получим ряд - это гармонический расходящийся ряд.
Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке .
Ответ: - область сходимости заданного функционального ряда.
Пример №6 (№18 из [10], студент самостоятельно у доски).
Найти область сходимости функционального ряда:
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можно записать:
.
Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то ряд расходится.
Исследуем заданный функциональный ряд на сходимость в точках х=1 и х= - 1.
При получается числовой положительный ряд . Он является расходящимся, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, заданный функциональный ряд в точке расходится.
При получается числовой знакочередующийся ряд вида . Он является расходящимся, так как не удовлетворяет условиям признака Лейбница: а) ; б) .
Ряд составленный из абсолютных величин элементов ряда имеет вид и является расходящимся.
Значит, исходный функциональный ряд расходится и в точке .
Поэтому, область сходимости заданного функционального ряда интервал - .
Ответ: .
Пример №7 (№28 из [8], студент самостоятельно у доски).
Найти область сходимости функционального ряда:
.
Решение. Определим и заданного ряда:
, .
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
=
Если , т.е. , то в соответствии с признаком Даламбера абсолютной сходимости функционального ряда, исследуемый функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то функциональный ряд расходится.
Исследуем заданный ряд в точках и .
При получим числовой положительный ряд . Это ряд Дирихле с . Известно, что если , то ряд расходится. Значит, функциональный ряд в точке расходится.
При получим числовой знакочередующийся ряд вида . Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е. и : .
Ряд, составленный из абсолютных величин элементов ряда , имеет вид и является расходящимся.
Значит, функциональный ряд сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале .
Ответ: .
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из [10], с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если , т.е. то функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то исследуемый функциональный ряд расходится на указанных промежутках.
При функциональный ряд становится числовым положительным расходящимся рядом , так как не выполняется необходимое условие сходимости числового ряда, т.е. .
Значит, область абсолютной сходимости функционального ряда есть интервал .
Найдем сумму заданного функционального ряда на его области сходимости.
Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с . Сумму ряда будем определять по формуле:
.
При сумма ряда .
Итак, сумма функционального ряда при равна .
Ответ: При .
Пример №9 (№16 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
В соответствии с признаком Даламбера, если , т.е. или , то заданный функциональный ряд сходится абсолютно.
Если , т.е. , исследуемый функциональный ряд расходится.
При получается числовой положительный ряд . Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Следовательно, исследуемый функциональный ряд в точке расходится.
При получается числовой знакочередующийся ряд вида . Он расходится, так как не удовлетворяет условиям признака Лейбница: а) ; б) . Значит, в точке функциональный ряд расходится.
Следовательно, областью сходимости заданного функционального ряда является интервал .
Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с . Сумма ряда на интервале будет определяться по формуле
Ответ: При .
В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.
Исследование ряда на сходимость в точке
Вместо переменной в функциональный ряд подставляется ее значение.
Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.
Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.
Определение области сходимости функционального ряда
Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).
Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).
Формирование ответа.
Нахождение суммы функционального ряда
Определение области сходимости функционального ряда.
Нахождение суммы функционального ряда с учетом его области сходимости (использование формул суммы геометрической прогрессии).
После подведения итогов оговаривается домашнее задание.
Домашнее задание: практическое занятие №12 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №10 (№47из [10]).
Исследовать сходимость функционального ряда
в точках и .
Решение
Если , то ряд примет вид: - числовой положительный ряд.
Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд расходится. Значит, функциональный ряд в точке расходится.
Если , то получится числовой положительный ряд вида: . Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд сходится абсолютно. Значит, исследуемый функциональный ряд в точке сходится абсолютно.
Ответ: заданный функциональный ряд сходится абсолютно в точке и расходится при
Пример №11 (№30 из [10]).
Найти область сходимости ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ря-да можно записать:
,
Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то ряд расходится в соответствии с признаком Даламбера абсолютной сходимости функционального ряда.
При функциональный ряд становится числовым знакочередующимся рядом вида 1-1+1-…. Он расходится, так как не удовлетворяет ни одному условию признака Лейбница: а) ; б) . Значит, функциональный ряд в точке расходится.
При функциональный ряд становится числовым положительным рядом вида 1+1+1+…. Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, функциональный ряд в точке расходится.
Таким образом, областью абсолютной сходимости исследуемого функционального ряда является интервал .
Ответ: .
Пример №12 (№38 из [10]).
Найти область сходимости ряда
Решение. По признаку Даламбера абсолютной сходимости функционального ря-да имеем:
.
Если, т.е. , или , то функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то ряд расходится.
При функциональный ряд становится числовым знакочередующимся рядом . Он расходится, так как не удовлетворяет ни одному условию признака Лейбница: а) ; б) .
Значит, функциональный ряд расходится в точке .
При функциональный ряд становится положительным числовым рядом . Он является расходящимся, так как не выполняется необходимое условие сходимости числового ряда .
Значит, функциональный ряд расходится в точке .
Таким образом, область абсолютной сходимости исследуемого ряда есть интервал .
Ответ: .
Пример №13 (№5 из [10]).
Найти область сходимости функционального ряда:
Решение
По признаку Даламбера абсолютной сходимости функционального ря-да имеем:
.
Если , то
.
Тогда .
Если , т.е. , то заданный ряд сходится абсолютно.
Если , то 1.
Тогда, =. Если , т.е. , то заданный функциональный ряд сходится абсолютно.
Отсюда, - интервал сходимости заданного функционального ряда.
Определим сходимость ряда в точках и .
Если , то ряд примет вид - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, заданный функциональный ряд расходится в точке .
Если , то ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, исследуемый функциональный ряд расходится в точке .
Значит, - область абсолютной сходимости заданного функционального ряда. Ответ: .
Пример №14 (№15 из [10]).
Найти сумму ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
.
Если , т.е. , то заданный функциональный ряд сходится абсолютно на указанном интервале.
Если , т.е. , исследуемый функциональный ряд расходится.
При функциональный ряд примет вид 1+1+1+… - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, в точке исследуемый функциональный ряд расходится.
При функциональный ряд примет вид 1-1+1-1+… - числовой знакочередующийся ряд. Он расходится, так как ни одно из двух условий признака Лейбница не выполняется: а) ; б) . Значит, функциональный ряд в точке расходится. Значит, - область абсолютной сходимости заданного функционального ряда.
На области своей сходимости исследуемый ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:
, где .
Тогда, при .
Ответ: при .
Пример№15 (№ 17 из [10]).
Найти сумму ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ря-да имеем:
Если , т.е. заданный функциональный ряд сходится абсолютно.
На области своей области сходимости ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:
, где .
Тогда, при /0.
Ответ: при /0.
Практическое занятие №2
Тема: "Равномерно сходящиеся функциональные последовательности и ряды"
Тип занятия: практикум решения задач.
Форма занятия: комбинированная между коллективной и фронтальной.
Средства обучения на занятии: сборник задач, методические рекомендации к практическим занятиям, телевизор, подключенный к компьютеру, графопроектор, доска, мел.
Цель: закрепление знаний полученных на лекции, применение их на практике.
Методы: словесные, наглядные, по дидактической цели - познавательные, по характеру познавательной деятельности - проблемные.
Ход занятия:
1. Организационная часть: Студентам сообщается тема практического занятия, его цель, проверка присутствующих (3 минуты).
2. Основная часть: Проверка домашнего задания с помощью теста (20 минут). Фронтальный опрос по изученной теме (12 минут). Ознакомление с новым материалом, первичное закрепление и осмысление (50 минут). Затем, подведение итогов и постановка домашнего задания (5 минут).
Конспект занятия
Преподаватель: Тема занятия: "Равномерно сходящиеся функциональные последовательности и ряды". Цель - приобрести навыки решения задач по вышеуказанной теме. Но прежде, проведем самостоятельную работу, которая позволит определить, насколько успешно вы справились с домашним заданием.
Если есть возможность провести занятие в компьютерном классе, то самостоятельная работа по домашнему заданию проводится с помощью теста. Для этого преподавателю необходимо до начала занятия установить программу на компьютеры. Чтобы студенты могли приступить к тестированию, преподавателю также нужно ввести пароль. Студенту необходимо внести свои данные (Ф.И.О., курс, группе). Только тогда он сможет пройти тестирование, а результат будет внесен в журнал. В тесте предлагается три вида заданий: а) исследовать сходимость функционального ряда в точке; б) определить область сходимости функционального ряда; в) найти сумму функционального ряда. Во время прохождения теста программой случайным образом выбирается по одному примеру из каждого вида заданий (всего выбирается 3 примера) и предлагается студенту для решения. Все примеры были решены на предыдущей практике или являлись домашним заданием. На каждое задание, чтобы решить его и выбрать правильный ответ из предложенных четырех, предоставляется 5 минут. Студент не может прервать тестирование, пока не решит все три задания или пока не закончится время тестирования. По окончании тестирования выдается результат в виде оценки, который автоматически вносится в журнал. В приложении приводятся тестовые задания с указанием правильных ответов.
Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1: Какая последовательность называется равномерно сходящейся?
Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция , в которой она равномерно сходится на множестве . Обозначение:
[14].
Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.
Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].
Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.
Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].
Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.
Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.
Ответ: Теорема. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве .
Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.
Пример №16 (№349 из [7], c комментариями преподавателя).
Показать, что ряд
сходится равномерно при всех действительных значениях .
Решение
Данный ряд при любом значении сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства , т.е.
.
Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству . Итак, данный ряд сходится рав-номерно в промежутке при всех .
Ответ: Доказана равномерная сходимость для R.
Пример №17 (№51 из [10], студент у доски с помощью преподавателя).
Исследовать на равномерную сходимость ряд
на любом конечном интервале.
Решение
Докажем, что каково бы ни было число , данный ряд сходится равномерно и абсолютно в круге радиусом , т.е. .
Заданный ряд сходится при любом значении , в частности, при , получаем числовой ряд: .
Исследуем его на абсолютную сходимость, применив признак Даламбера . Так как , то ряд сходится, причем абсолютно.
Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда при .
Значит, заданный ряд равномерно и абсолютно сходится при .
Ответ: Доказана равномерная и абсолютная сходимость при .
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке .
Решение
Так как при R и числовой положительный ряд сходится, как обобщенный гармонический ряд с , то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях .
Ответ: Доказана равномерная и абсолютная сходимость для R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд сходится равномерно на отрезке .
Решение
Если , то . Значит, числовой положительный ряд является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при равномерно и абсолютно.
Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд сходится равномерно и абсолютно на отрезке .
Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Так как при N и R, то в качестве мажорантного ряда выберем - числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд по теореме Вейерштрасса равномерно и абсолютно сходится, так как при R
Ответ: Доказана равномерная и абсолютная сходимость на интервале .
Пример №21 (№164 из [8], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на интервале .
Решение
Если , то - условие равномерной сходимости не выполняется.
Если , то . Ряд мажорантный по отношению к ряду . По признаку Даламбера сходимости числовых рядов имеем: . Так как , то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как при , ряд сходится равномерно и абсолютно.
Ответ: Равномерно и абсолютно сходится при .
Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.
Пример №22 (№94 из [10], с комментариями преподавателя).
Показать, что на луче функциональный ряд
равномерно сходится. Начиная с какого номера , остаток ряда (независимо от значения ) удовлетворяет неравенству ?.
Решение
Воспользуемся признаком Вейерштрасса.
Так как при справедливо неравенство: , то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда , т.е. при .
Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с
, , .
Значит, функциональный ряд сходится равномерно и абсолютно при .
Для оценки остатка заданного функционального ряда подсчитаем остаток числового положительного (мажорантного) ряда:
, где .
Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е. .
Найдем теперь, при каком значении будет выполняться неравенство .
Для этого необходимо решить неравенство , , .
Ответ: При .
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: практическое занятие №13 из [9].
Ниже приведены решенные номера домашнего задания.
Пример №23 (№54 из [10]).
Показать, что ряд сходится неравномерно в интервале .
Решение.
В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е. .
Но , . Следовательно, приняв , невозможно добиться выполнения неравенства при . Итак, ряд сходится неравномерно на интервале .
Ответ: Доказана неравномерная сходимость на интервале .
Пример №24 (№63 из [10]).
Исследовать на равномерную сходимость на промежутке .
Решение
Так как N, R, то в качестве мажорантного ряда выберем - числовой положительный ряд. Он сходится, так как это ряд Дирихле с . Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится равномерно и абсолютно на промежутке , так как выполняется неравенство при .
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .
Пример №25 (№ 66 из [10]).
Исследовать на равномерную сходимость на промежутке .
Решение
Так как , то при .
Ряд - мажорантный, исследуем его на сходимость. По признаку Даламбера имеем:
.
Так как , то ряд сходится. По теореме Вейерштрасса, так как для R , то заданный ряд сходится равномерно и абсолютно на промежутке .
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .
Пример №26 (№354 из [7]).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Воспользуемся признаком Вейерштрасса равномерной и абсолютной сходимости функциональных рядов. Так как при любом , то справедливо неравенство , при R. - сходящийся ряд Дирихле с . Значит, и ряд сходится абсолютно и равномерно при R.
Ответ: Заданный ряд сходится абсолютно и равномерно при R.
Пример №27 (№76 из [10])
Показать, что ряд сходится равномерно на отрезке
Решение
Так как при , и ряд - сходящийся ряд Дирихле с , то, по признаку Вейерштрасса, ряд сходится абсолютно и равномерно на отрезке .
Ответ: Заданный ряд сходится абсолютно и равномерно на отрезке .
Пример №28 (№82 из [10]).
Сходится ли равномерно ряд , если ?
Решение
Если , то . Так как -сходящийся числовой положительный ряд - ряд Дирихле с , то по теореме Вейерштрасса, ряд сходится абсолютно и равномерно при .
Ответ: Заданный ряд сходится абсолютно и равномерно при .
Пример №29 (№86 из [10]).
Показать, что ряд сходится равномерно на интервале .
Решение
Так как при любом R и ряд - сходящийся числовой положительный ряд - ряд Дирихле с , то ряд по признаку Вейерштрасса, сходится абсолютно и равномерно на интервале .
Ответ: Заданный ряд сходится абсолютно и равномерно при .
Практическое занятие №3
Тема: "Интегрирование и дифференцирование функциональных
последовательностей и рядов"
Тип занятия: практикум решения задач.
Форма занятия: комбинированная между коллективной и фронтальной.
Средства обучения на занятии: сборник задач, методические рекомендации к практическим занятиям, телевизор, подключенный к компьютеру, графопроектор, доска, мел.
Цель: закрепление знаний полученных на лекции, применение их на практике.
Методы: словесные, наглядные, по дидактической цели - познавательные, по характеру познавательной деятельности - проблемные.
Ход занятия:
Организационная часть: Студентам сообщается тема практического занятия, его цель, проверка присутствующих (3 минуты).
2. Основная часть: Проверка домашнего задания (12 минут). Фронтальный опрос по изученной теме (10 минут). Ознакомление с новым материалом, первичное закрепление и осмысление (60 минут). Подведение итогов и постановка домашнего задания. (5 минут).
Конспект занятия
Преподаватель: Тема занятия: "Интегрирование и дифференцирование функциональных последовательностей и рядов". Цель - приобрести навыки решения задач по вышеуказанной теме. Но прежде, проведем самостоятельную работу, которая позволит определить, насколько успешно вы справились с домашним заданием.
Проводится самостоятельная работа по домашнему заданию на 15 минут. В самостоятельной работе предлагается 3 варианта, в каждом варианте по 2 задания. Например, Вариант №1: №№ 23, 26; Вариант №2: №№ 24, 27, Вариант №2: №№ 21,28. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 29, 25. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формули-ровки теорем по теме "Интегрирование и дифференцирование функциональных последовательностей и рядов", необходимые нам сегодня для решения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1:. Сформулируйте теорему о непрерывности суммы функционального ряда в точке.
Ответ: Теорема 1. Если функции непрерывны в точке , и функциональный ряд равномерно сходится на множестве , то его сумма также непрерывна в точке .
Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.
Ответ: Теорема 2. Если последовательность функций , непрерывных на , сходится равномерно на указанном отрезке к функции , то для последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива формула:
.
Следствие. Пусть функции , N непрерывны на и функциональный ряд равномерно сходится на указанном отрезке. Тогда для функциональный ряд вида будет равномерно сходиться на отрезке к или к , т.е. функциональный ряд можно почленно интегрировать:
.
Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?
Ответ: Теорема 4. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на указанном отрезке. Тогда предел последовательности непрерывно диффепенцируемых функций непрерывно дифференцируем на указанном отрезке и верно равенство:
или.
Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:
=.
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.
При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Пример№30 (№ 343 из [7], с комментариями преподавателя).
Можно ли к ряду
применить теорему о почленном дифференцировании рядов?
Решение
Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.
Сравним исследуемый функциональный ряд с функциональным рядом при любом фиксированном .
Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при R в соответствии с признаком Вейерштрасса.
Действительно, при R справедливо неравенство . А положительный числовой ряд является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с ).
Обозначим общие элементы сравниваемых рядов Так как при и - бесконечно малые величины, то . В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел , то оба ряда и одновременно сходятся или одновременно расходятся.
Но ряд абсолютно и равномерно сходится для R, значит, функциональный ряд сходится равномерно и абсолютно при . Кроме того, члены ряда - непрерывные функции при R.
Найдем производную общего элемента функционального ряда
: .
Ряд, составленный из производных членов исходного функционального ряда, имеет вид:
.
Все элементы записанного ряда представляют собой непрерывные функции на R.
Докажем, что ряд равномерно и абсолютно сходится на R.
Очевидно, что для R выполняется следующие неравенства: . Но числовой положительный ряд сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с . В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд при R. А это ряд, составленный из производных чледов исследуемого функционального ряда.
Значит, к ряду можно применить теорему о почленном дифференцировании.
Ответ: Теорему о почленом дифференцировании применить можно.
Пример №31 (№108 из [10], студент самостоятельно)
Убедиться, что ряд можно дифференцировать почленно.
Решение
Члены функционального ряда являются непрерывно дифференцируемыми функциями при R.
Очевидно неравенство при R, N.
Сравним функциональный и числовой ряды и .
При R, N справедливо неравенство .
Числовой положительный ряд является сходящимся рядом, так как представляет собой ряд Дирихле с .
Значит, по признаку Вейерштрасса, функциональный ряд сходится равномерно и абсолютно при R.
Найдем производную общего элемента заданного функционального ряда: при R.
Составим функциональный ряд из производных членов функционального ряда :
.
Члены этого функционального ряда являются непрерывными функциями при R.
Кроме того, функциональный ряд абсолютно и равномерно сходится при R в соответствии с признаком Вейерштрасса. Действительно, так как
Подобные документы
Психолого-педагогические и методические основы изучения в школе теории комплексных чисел. Методическое обеспечение изучения этой темы в 10 классе общеобразовательной школы. Обзор учебников по алгебре и началам математического анализа для 10-11 классов.
дипломная работа [3,5 M], добавлен 26.12.2011Изучение раздела математического анализа "Предел функции в точке, на бесконечности, слева и справа, бесконечный предел". Методические рекомендации по изучению данной темы, психолого-педагогические аспекты образования в высшей школе, практические занятия.
дипломная работа [1,5 M], добавлен 24.06.2011Психолого-педагогические аспекты реализации принципа наглядности при изучении математики в средней школе. Методические основы изучения темы "Свойства степенной функции" в школе. Основные характеристики и методические рекомендации к использованию пособия.
дипломная работа [3,7 M], добавлен 16.06.2011Тройной интеграл: условия его существования, способы вычисления, свойства и замена переменных. Выражение объема в криволинейных координатах. Методика изучения темы "Тройные интегралы" в педагогическом ВУЗе с учетом возрастных особенностей студентов.
дипломная работа [1,2 M], добавлен 24.06.2011Психолого-педагогические основы изучения тригонометрического материала в школе. Разработка системы упражнений по теме "Тригонометрические уравнения". Методические рекомендации по решению задач, проведению уроков, контрольных и проверочных работ.
дипломная работа [371,9 K], добавлен 16.03.2012Психолого-педагогические основы работы в школе. Роль педагогической практики в формировании у будущих учителей методологических навыков. Основные аспекты преподавания географии. Воспитательные и внеклассные мероприятия, работа классного руководителя.
дипломная работа [52,7 K], добавлен 06.02.2011Обзор учебников и методов изучения темы. Главные принципы при решении уравнений с переменной в знаменателе. Методические рекомендации для проведения пропедевтики темы, ее изучения и последующего закрепления. Подходы к обоснованию алгоритмов решения.
курсовая работа [2,4 M], добавлен 12.06.2010Психолого-педагогические аспекты развития музыкального слуха. Теоретические основы развития музыкального слуха, используемые методы и приемы, современные тенденции. Рекомендации по развитию музыкального слуха домриста на начальном этапе обучения.
курсовая работа [2,0 M], добавлен 27.01.2014Особенности преподавания темы "Информационные системы" в классах с гуманитарной направленностью, основные определения и стандарты. Анализ электронных пособий по теме и методические рекомендации. Программы для создания тестов и проведения тестирования.
курсовая работа [149,7 K], добавлен 23.10.2011Повышение качества математического образования. Методика использования занимательных задач в ходе внеурочной деятельности. Роль кружковой работы как одной из форм внеурочной деятельности учащихся. Психолого-педагогические аспекты изучения теории графов.
дипломная работа [2,0 M], добавлен 13.12.2017