Послушные шарики, или еще раз о развитии логического мышления

Серия занимательных логических задач, которые можно применять на уроках математики в начальной школе. Всякая математическая теория представляет собой множество предложений, над которыми производятся действия (операции).

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 12.06.2002
Размер файла 79,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

послушные шарики или еще раз о развитии логического мышления

Математическая логика (теоретическая логика, символическая логика) -- раздел математики, посвященный изучению математических доказательств и вопросов оснований математики (“Математическая энциклопедия”).

Всякая математическая теория представляет собой множество предложений, над которыми производятся действия (операции), в результате которых снова получаются предложения.

Если нет логических операций -- нет математической логики, да и вообще математики; если ученик не совершает этих операций, то вряд ли приходится говорить о развитии логического мышления.

В начальной школе в первую очередь именно через решение задач ребенок учится рассуждать, т. е. строить предложения с помощью слов и словосочетаний: неверно, что -- логическая операция, называемая отрицанием; и -- конъ-юнкция; или -- дизъюнкция; если…, то… -- импликация; тогда и только тогда, когда -- эквиваленция. Мы не будем давать определения, поскольку учителя знакомы с этими операциями из курсов математики педагогических университетов (институтов) и педколледжей (училищ).

1. Две классические задачи

1. В трех одинаковых коробках лежат по два шарика: в одной -- два черных, в другой -- два белых, в третьей -- белый и черный. На каждой коробке есть табличка: на одной изображены два белых шарика, на другой -- два черных, на третьей -- белый и черный. Но известно, что содержимое каждой коробки не соответствует табличке. Как вынув только один шарик только из одной коробки, переставить таблички на коробках в соответствии с их содержимым?

Решение

Пронумеруем коробки как на рис. 1.

В коробке 3 находятся либо два белых шарика, либо два черных. Достанем из нее шарик. Допустим, он оказался белым (рис. 2).

Следовательно, в коробке 3 -- два белых шарика (рис. 3).

Поскольку в коробке 1 не может быть ни двух черных шариков (по условию надпись не соответствует действительности), ни двух белых (они в коробке 3), то там -- черный и белый (рис. 4):

Ответ изображен на рис. 5.

Если бы из коробки 3 при первой попытке мы вытащили черный шарик, то ответ был бы таким (рис. 6):

Подчеркнем, что при рассуждениях мы пользовались словами “неверно, что в коробке такие-то шары” (отрицание), “если достанем белый шар, то…” (импликация) и т. д. Таким образом, ребенок, сам того не подозревая, совершает логические операции над высказываниями.

2. У меня в трех коробках лежали гвозди, винты и гайки. На каждой коробке было написано, что в ней лежит. Однажды мой младший брат пересыпал содержимое коробок так, что надпись на каждой коробке перестала соответствовать ее содержимому. Хорошо еще, что он не перепутал их между собой: гвозди остались лежать отдельно от гаек и винтов и т. д. Можно ли, открыв одну из коробок, определить, что лежит в каждой из коробок?

Решение

Во-первых, для простоты обсуждения, гвозди, винты и гайки обозначим кружочками разных цветов (рис. 7). Во-вторых, заметим, что начинать рассуждения можно с любой коробки. Приведем один из вариантов, а другие -- предоставим ученикам.

Откроем коробку 1. Допустим, там оказались гайки (рис. 8; а могли быть и винты: рассуждения проводились бы аналогично).

В коробке 2 винтов быть не может по условию, следовательно, винты -- в коробке 3 (рис. 9).

Ну, а во второй коробке -- гвозди.

2. Шариковый сериал

Имеются два непрозрачных ящика. В них находятся один черный и один белый шарик:

либо по одному в каждом ящике,

либо в одном ящике два шарика.

На ящиках есть надписи, по которым надо определить (если возможно), где какой шарик находится.

Указывается также, являются ли надписи истинными или ложными.

Условия задач и ответы представим в виде таблицы. И -- истинно, Л -- ложно. Запись “Обе И” означает, что надписи на каждом ящике правдивы.

Ящик 1

Ящик 2

Истинность

надписей

Ответ

1

Здесь

Здесь нет шариков

Обе И

В ящике 1 и черный, и бе-лый шарики

2

Здесь нет шариков

Здесь оба шарика

Обе Л

Возможны варианты (решение после табл.)

3

Здесь

Здесь

Обе Л

В ящике 1 -- белый шарик, в ящике 2 -- чер--ный

4

Здесь не

Здесь не

Обе И

В ящике 1 -- черный шарик, в ящике 2 -- белый

5

Здесь не

Здесь не

Обе Л

В ящике 1 -- белый шарик, в ящике 2 -- черный

6

Здесь или

здесь

Здесь

Обе И

В ящике 1 -- белый шарик, в ящике 2 -- черный

7

Здесь или

здесь

Здесь

Обе Л

В ящике 1 -- черный шарик, в ящике 2 -- белый

8

Здесь и

здесь

Здесь

Первая -- И,

Вторая -- Л

В ящике 1 -- оба шарика, в ящике 2 -- пусто

Решение

1. Поскольку надписи истинны, то в ящике 2 шариков нет. Следовательно, они оба в ящике 1.

Внимание. Надпись на ящике 1 “здесь черный” не означает, что там не может быть белого шарика. Ведь утверждение “директор моей школы живет в Беларуси” не означает, что в стране не живу я…

2. Так как надпись на ящике 2 неверна, то возможны варианты:

а) в ящике 2 нет шариков вообще, следовательно, в ящике 1 -- и белый, и черный шарики;

б) если неверно утверждение “здесь оба шарика”, то верным может быть утверждение “здесь белый шарик” или “здесь черный шарик” (т. е. один из шариков находится в ящике 2), значит в ящике 1 тоже один шарик.

Информация для учителя. В этой задаче мы имеем дело с одним из законов де Моргана: , который звучит так: отрицание конъюнкции двух высказываний эквивалентно дизъюнкции отрицаний каждого из данных высказываний. Напомним также, что дизъюнкция истинна, если истинно хотя бы одно из высказываний. Применительно к нашей задаче: утверждение “неверно, что в ящике 2 лежат оба шарика” равносильно утверждению “неверно, что в ящике лежит черный шарик, или неверно, что в ящике лежит белый шарик”. Отсюда и получаются вышеописанные варианты а) и б).

Решения остальных задач предоставляем учителю.

Таким образом, ученик “проходит” через логические операции, хотя, естественно, и не знает их строгих определений (на интуитивном уровне), следовательно, его логическое мышление развивается. Учитель же знает законы логики и может корректировать рассуждения ребенка, если они ошибочны.

А. Щан -- старший преподаватель кафедры математики и методики ее преподавания БГПУ


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.