Кинематика и динамика поступательного движения
Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.
Рубрика | Физика и энергетика |
Вид | методичка |
Язык | русский |
Дата добавления | 10.03.2007 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
(2.9) Откуда . (2.10)
Таким образом, величина J может быть, с одной стороны, измерена, а с другой стороны, рассчитана, исходя из масс и геометрических размеров деталей установки Обербека. Момент инерции J маятника вычисляется из условия аддитивности момента инерции и равен сумме моментов инерции шкивов, крестовины и цилиндрических грузов, вращающихся вокруг оси, не проходящей через их середины. Графики позволяют также определить момент силы трения Мтр., действующей в системе.
Экспериментальная установка
Ось маятника Обербека закреплена в подшипниках, так что вся система может вращаться вокруг горизонтальной оси. Передвигая грузы по спицам, можно легко изменять момент инерции системы. На шкив виток к витку наматывается нить, к которой привязана платформа известной массы. На платформу накладываются грузы из набора. Высота падения грузов измеряется с помощью линейки, укрепленной параллельно нити. Маятник Обербека может быть снабжен электромагнитной муфтой - пускателем и электронным секундомером. Перед каждым опытом маятник следует тщательно отрегулировать. Особое внимание необходимо обратить на симметричность расположения грузов на крестовине. При этом маятник оказывается в состоянии безразличного равновесия.
Проведение эксперимента
Задание 1. Оценка момента силы трения, действующей в системе
Измерения
1. Устанавливают грузы m1 на крестовине в среднее положение, размещая их на равном расстоянии от оси таким образом, чтобы маятник находился в положении безразличного равновесия.
2. Накладывая небольшие грузы на платформу, определяют приближенно минимальную массу m0 , при которой маятник начнет вращаться. Оценивают момент силы трения из соотношения
Мтр = m0gR , (2.11)
где R - радиус шкива, на который намотана нить.
Дальнейшие измерения желательно проводить с грузами массой m 10m0.
Задание 2. Проверка основного уравнения динамики вращательного движения
Измерения
1. Укрепляют грузы m1 на минимальном расстоянии от оси вращения. Балансируют маятник. Измеряют расстояние r от оси маятника до центров грузов.
2. Наматывают нить на один из шкивов. По масштабной линейке выбирают начальное положение платформы, производя отсчет, например, по ее нижнему краю. Тогда конечное положение груза будет находиться на уровне поднятой приемной платформы. Высота падения груза h равна разности этих отсчетов и может быть оставлена во всех опытах одинаковой.
3. Кладут на платформу первый груз. Расположив груз на уровне верхнего отсчета, фиксируют это положение, зажимая нить электромагнитной муфтой. Подготавливают к измерению электронный секундомер.
4. Отпускают нить, предоставив грузу возможность падать. Это достигается отключением муфты. При этом автоматически включается секундомер. Удар о приемную платформу останавливает падение груза и останавливает секундомер.
5. Измерение времени падения при одном и том же грузе выполняется не менее трех раз.
6. Проводят измерения времени падения груза m при других значениях момента Мн. Для этого либо добавляют на платформу дополнительные перегрузки, либо перебрасывают нить на другой шкив. При одном и том же значении момента инерции маятника необходимо провести измерения не менее чем с пятью значениями момента Мн .
7. Увеличивают момент инерции маятника. Для этого достаточно симметрично переместить грузы m1 на несколько сантиметров. Шаг такого перемещения должен быть выбран таким образом, чтобы получить 5-6 значений момента инерции маятника. Проводят измерения времени падения груза m (п.2-п.7). Все данные заносят в таблицу 2.1 отчета.
Обработка результатов. Исследование зависимости углового ускорения от момента силы при постоянном значении момента инерции.
1. Пользуясь формулами (2.4.), (2.5), (2.8), определяют для каждого опыта по средним значениям времени значения линейного ускорения а, углового ускорения и момента силы натяжения нити Мн.
2. Строят графики зависимостей момента силы Мн, как функции, от углового ускорения , как аргумента, для различных моментов инерции маятника J. Т. к. Мн = f() - линейная функция, то ее графики будут прямыми линиями. Если экспериментальные точки не ложатся на прямую, графики надо проводить так, чтобы «разброс» точек был приблизительно одинаков по обе стороны прямой. При этом они не обязательно пройдут через одну точку на вертикальной оси. Малый «разброс» точек свидетельствует о хорошей линейности функции Мн = f() и том, что угловое ускорение действительно прямо пропорционально полному моменту сил, приложенных к вращающемуся телу.
Обработка результатов. Исследование зависимости углового ускорения от момента инерции при постоянном значении момента силы
1. Для исследования используют ранее построенный график. Рассчитывают моменты инерции маятника по формуле (2.10). Для этого нужно выбирать точки прямо с графиков, например, А(М1н ,1) и В(М2н,,2 ).
2. На графике проводят горизонтальную прямую через произвольную точку на оси Мн, пересекающую графики Мн = f(). Точки пересечения позволяют определить те значения угловых ускорений маятника, которые соответствуют разным значениям моментов инерции, но при постоянном значении момента силы M = Mн - Mтр. Записывают полученные значения и соответствующие им значения J в таблицу 2.2. отчета.
3. Угловое ускорение обратно пропорционально моменту инерции, т. е. график зависимости = f(J) представляет собой гиперболу и не идентифицируется. Но график зависимости = f(J-1) должен представлять собой прямую линию, проходящую через начало координат. Поэтому следует вычислить величины J-1 и построить соответствующий график. Угловой коэффициент наклона этого графика равен полному моменту приложенных сил.
Обработка результатов. Определение момента силы трения, действующей в системе
1. В идеальном случае все графики M=f() должны пересекаться в одной точке, лежащей на оси М. Координата этой точки дает значение момента силы трения. Для реальных же графиков, скорее всего, будет иметь место некоторый разброс в положении этой точки.
2. Определить по графику все значения момента силы трения и найти его среднее значение. Сравнить полученный результат с ранее измеренным в задании 1.
Задание 3. Сравнение измеренных и вычисленных значений моментов инерции
маятника
1. Выписывают в таблицу 2.4 отчета измеренные значения моментов инерции маятника.
2. Используя формулы для расчета моментов инерции геометрически правильных тел и теорему Гюйгенса - Штейнера, вычисляют моменты инерции шкивов, крестовины и грузов, вращающихся вокруг оси, не проходящей через их середину. Данные для расчета берут из «паспорта» прибора. Общий момент инерции маятника находится суммированием моментов инерции деталей маятника.
3. Сравнивают вычисленные и измеренные значения моментов инерции. Находят относительные отклонения вычисленных и измеренных моментов инерции: .
ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ГЮЙГЕНСА-ШТЕЙНЕРА
МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ
Цель работы
Экспериментальная проверка теоремы Гюйгенса - Штейнера и определение моментов инерции тел простой формы.
Идея эксперимента
В эксперименте используется связь между периодом колебаний крутильного маятника и его моментом инерции. В качестве маятника выбрана круглая платформа, подвешенная в поле тяжести на трех длинных нитях (трифилярный подвес). Платформа может совершать крутильные колебания вокруг вертикальной оси. На платформу помещаются тела различной формы, измеряются периоды колебаний маятника и определяются значения моментов инерции этих тел. Теорема Гюйгенса - Штейнера проверяется по соответствию между экспериментальной и теоретической зависимостями моментов инерции грузов от их расстояния до центра платформы.
Теория
Основное уравнение вращательного движения твердого тела вокруг неподвижной оси имеет вид
, (3.1)
где - угловая скорость вращения, J - момент инерции тела относительно оси вращения, М - момент внешних сил относительно этой оси.
Теорема Гюйгенса - Штейнера. Если момент инерции тела относительно некоторой оси вращения, проходящей через центр масс, имеет значение J0 , то относительно любой другой оси, находящейся на расстоянии а от первой и параллельной ей, он будет равен
, (3.2)
где m - масса тела.
Для проверки теоремы Гюйгенса - Штейнера в данной работе исследуются крутильные колебания твердого тела на трифилярном подвесе. Трифилярный подвес представляет собой круглую платформу радиуса R, подвешенную на трех симметрично расположенных нитях одинаковой длины, укрепленных у ее краев (рис. 8). Наверху эти нити также симметрично прикреплены к диску несколько меньшего размера (радиуса r). Платформа может совершать крутильные колебания вокруг вертикальной оси ОО, перпендикулярной к ее плоскости и проходящей через ее центр. Такое движение платформы приводит к изменению положения ее центра тяжести по высоте.
Если платформа массы m, вращаясь в одном направлении, поднялась на высоту h, то
приращение ее потенциальной энергии будет равно
, (3.3)
где g - ускорение силы тяжести. Вращаясь в другом направлении, платформа придет в положение равновесия (h = 0) с кинетической энергией, равной
, (3.4)
где J - момент инерции платформы, 0 - угловая скорость вращения платформы в момент прохождения ею положения равновесия.
Пренебрегая работой сил трения, на основании закона сохранения механической энергии имеем:
. (3.5)
Считая, что платформа совершает гармонические крутильные колебания, можно записать зависимость углового смещения платформы от времени t в виде
, (3.6)
где - угловое смещение платформы, 0 - угол максимального поворота платформы, т.е. амплитуда углового смещения, Т - период колебания. Для угловой скорости , являющейся первой производной по времени от величины смещения, можно записать
. (3.7)
В моменты прохождения платформы через положение равновесия (t = 0, 0,5Т, …) величина (t) будет максимальна и равна
. (3.8)
Из выражений (3.5) и (3.8) следует, что
. (3.9)
Если l длина нитей подвеса, R - расстояние от центра платформы до точек крепления нитей на ней, r - радиус верхнего диска (рис. 8), то легко видеть, что
(3.10)
Так как
, (3.11)
а при максимальном отклонении платформы от положения равновесия
, (3.12)
то
. (3.13)
При малых углах отклонения 0 значение синуса этого угла можно заменить просто значением 0. Учитывая также, что при R l величину знаменателя можно положить равной 2l, получаем
(3.14)
При этом закон сохранения энергии (2.9) примет вид:
, (3.15)
откуда следует, что
(3.16)
По формуле (3.16) можно экспериментально определить момент инерции пустой платформы или платформы с телом, положенным на нее, так как все величины в правой части формулы непосредственно измеряются. Следует помнить, что m - это суммарная масса платформы и исследуемого тела, положенного на нее.
Экспериментальная установка
Вид установки показан на рис.8. Отношение радиуса платформы к длине нитей подвеса R/l 0,05, что соответствует приближениям, используемым при выводе формулы (3.16).
Тела на платформу необходимо класть строго симметрично, так, чтобы не было перекоса платформы. Для облегчения определения положения грузов и более точной их установки на платформе нанесены радиальные линии и концентрические окружности на определенном расстоянии друг от друга (5 мм).
Вращательный импульс, необходимый для запуска крутильных колебаний, сообщается платформе путем поворота верхнего диска вокруг оси. Это достигается с помощью рычага, закрепленного на верхнем диске. При таком возбуждении почти полностью отсутствуют другие виды колебаний, наличие которых затрудняет измерения. При измерениях недопустимо пользоваться амплитудами колебаний, большими 10.
Измерение времени колебаний может проводиться или с помощью ручного секундомера или с помощью таймера.
Проведение эксперимента
Задание 1. Измерение момента инерции пустой платформы
Измерения и обработка результатов
1. Момент инерции пустой платформы Jпл определяется по формуле (3.16). При этом период колебаний пустой платформы Т и его погрешность определяются на опыте, а величины l, R, r, m и их погрешности даются, как постоянные установки.
2. Сообщают платформе вращательный импульс и измеряют время t некоторого числа (N = 15 -20) полных колебаний. Такие измерения повторяют 3 - 5 раз. Полученные результаты заносят в таблицу 3.1 отчета.
3. По экспериментальным данным для каждого опыта находят значение периода крутильных колебаний.
4. Находят среднее значение и полную погрешность периода колебаний. При этом систематическая погрешность в измерении периода может быть взята равной .
5. Вычисляют момент инерции платформы JплЭ . Находят величину относительной и абсолютной погрешности для момента инерции платформы.
6. Рассчитывают теоретически момент инерции платформы JплT, исходя из ее массы и размеров. Находят погрешность такого расчета.
7. Сравнивают измеренное на опыте и вычисленное теоретически значение момента инерции пустой платформы. Указывают на сколько процентов экспериментальное
значение отличается от теоретического: .
Задание 2. Определение моментов инерции тел заданной формы
Измерения и обработка результатов
1. Платформу поочередно нагружают исследуемыми телами таким образом, чтобы их центр масс совпадал с осью вращения платформы. В качестве исследуемых тел выбираются пластины, имеющие форму квадрата, прямоугольника, равностороннего треугольника, диска, а также другие тела правильной геометрической формы.
2. Измеряют время нескольких колебаний всей системы. Для каждого тела проводят измерения 3 - 5 раз. Результаты измерений заносят в таблицу 3.2 отчета.
3. Вычисляют моменты инерции нагруженных платформ JN и их погрешности. При этом необходимо учесть, что в формулу (3.16) следует подставлять сумму масс тела и платформы, а в формуле погрешности погрешность массы равна суммарной погрешности массы платформы и тела.
4. Пользуясь тем, что момент инерции - величина аддитивная, вычисляют моменты инерции тел: JЭ = JN - JплЭ. Находят величину абсолютной и относительной погрешности для моментов инерции тел.
5. Проводят сравнение экспериментально полученных значений моментов инерции с рассчитанными теоретически (см. Приложение 3). Результаты расчетов заносят в таблицу 3.3 отчета.
Задание 3. Проверка теоремы Гюйгенса - Штейнера
Измерения
1. Для проверки теоремы Гюйгенса - Штейнера используют два или несколько одинаковых тел, имеющих цилиндрическую форму.
2. Устанавливают грузы в центре платформы, положив их один на другой. Возбуждают крутильные колебания платформы. Измеряют время t нескольких колебаний (N= 15 - 20). Данные заносят в таблицу 3.4 отчета.
3. Располагают грузы симметрично на платформе относительно оси вращения. Проводят измерение времени колебаний для 5 - 7 положений грузов, постепенно перемещая их к краям платформы. Заносят в таблицу 3.4 значения расстояний от центра масс каждого тела а до центра платформы, число колебаний N и время этих колебаний tN.
Обработка результатов
Для каждого положения грузов определяют период колебаний грузов Ti.
2. Заносят в таблицу значения а2.
3. Для каждого положения грузов находят значения момента инерции платформы с грузами Ji по формуле (3.16).
4. Полученные значения момента инерции Ji наносят на график зависимости момента инерции системы тел от квадрата расстояния центра масс грузов до оси вращения а2 (схематично эта зависимость представлена на рис. 9). Как следует из теоремы Гюйгенса - Штейнера, этот график должен быть прямой линией, с угловым коэффи-
циентом численно равным 2mгр, где mгр - масса одного груза. Кроме того, отрезок, отсекаемый от оси ординат, равен сумме моментов инерции ненагруженной платформы и моментов инерции грузов b = Jпл+ 2J0гр.
5. Из зависимости J=f(a2) определяют значение mгр и величину b. Сравнивают полученное значение с массами грузов, используемыми в работе, а также полученное значение b с расчетным значением. Совпадение этих величин (с учетом погрешностей вычислений) также подтверждает теорему Гюйгенса-Штейнера.
ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВОГО КОЛЕСА И СИЛЫ ТРЕНИЯ В ОПОРЕ
Цель работы
Определение момента инерции колеса и момента силы трения в опоре, используя закон сохранения и превращения энергии.
Идея эксперимента
В эксперименте используется массивное колесо, насаженное на горизонтально расположенный вал. Колесо приводится во вращение с помощью намотанного на вал шнура, к концу которого прикреплен груз.
Теория
Момент инерции - мера инертности тела при вращательном движении. Необходимо иметь в виду, что момент инерции в общем случае может иметь разные значения относительно разных осей вращения тела. Если тело имеет произвольную форму и произвольное распределение масс, момент инерции можно определить только приблизительным суммированием
,
где ri - расстояние от оси вращения до i-той элементарной массы mi.
Если тело имеет правильную геометрическую форму и постоянную плотность по всему объему, суммирование может быть заменено интегрированием по всему объему
.
Для расчета моментов инерции тел, имеющих простую геометрическую форму (диск, стержень, квадрат и т.д.), обычно пользуются готовыми формулами (Приложение 3).
В случаях, когда расчет моментов инерции тел затруднен, применяют различные способы их измерения. Ряд таких способов рассмотрен в данном практикуме. В настоящей работе предлагается энергетический подход к определению момента инерции.
Маховое колесо (рис. 10) состоит из маховика А, жестко закрепленного на горизонтальном валу В. На вал наматывается шнур, к концу которого прикреплен груз массой m, под действием силы тяжести которого вал может раскручиваться. При вращении любого тела возникают моменты сил, препятствующих его вращению. Эти моменты создаются, в основном, силами трения в опорах и, частично, силой сопротивления воздуха. Последний в данной работе не учитывается из-за его малости. Величина момента силы трения Мтр в опорах может быть установлена, например, из условия равновесия М - Мтр =0, а также по потере энергии вращающегося тела, как это сделано в данной работе. При падении с высоты h1 потенциальная энергия груза mgh1 идет на увеличение кинетической энергии поступательного
движения самого груза mv2/2, на увеличение кинетической энергии вращательного движения маховика и вала прибора J2/2 и на совершение работы А = Мтр по преодолению трения в опорах. По закону сохранения энергии
, (4.1)
где 1 - угловое перемещение вала в опоре, соответствующее перемещению h1 груза.
Движение груза равноускоренное, без начальной скорости, поэтому
, (4.2)
где t - время опускания груза с высоты h1. Угловая скорость махового колеса
, (4.3)
где r - радиус вала В. Момент силы трения Мтр устанавливается следующим образом. Колесо, вращаясь по инерции, поднимает груз на высоту h2<h1, на которой потенциальная энергия будет равна mgh2. Изменение потенциальной энергии при движении груза равно работе по преодолению момента силы трения в опорах, т.е.
. (4.4)
Откуда
. (4.5)
Выражая угловой путь (1 + 2) через линейный (h1 + h2) и радиус вала r, получаем
. (4.6)
Это выражение является рабочей формулой для измерения Мтр. Подставляя в формулу (4.1) значения v, , Мтр из (4.2), (4.3), (4.6), получаем рабочую формулу для определения момента инерции махового колеса
. (4.7)
Экспериментальная установка
При подготовке к измерению махового колеса шнур наматывается на вал виток к витку. К концу шнура прикреплена платформа известной массы, на которую накладываются грузы из набора к установке. Для измерения высоты падения груза h1 и высоты его поднятия h2 рядом с установкой укреплена масштабная линейка. Время падения груза измеряется с помощью ручного или стационарного электронного секундомера.
Проведение эксперимента
Задание 1. Измерение момента инерции махового колеса и момента силы трения
Измерения
1. Штангенциркулем измеряют радиус вала.
2. Высоту падения груза h1 во всех опытах можно брать одной и той же. Поэтому ее можно предварительно измерить как расстояние между заранее выбранным верхним
положением груза и его положением при полном разматывании шнура.
3. Наматывают шнур на вал, поднимая груз до выбранной отметки. На платформу кладут один груз из набора. Измеряют время падения груза до полного разматывания шнура.
4. Измеряют высоту h2, на которую поднимается груз после разматывания шнура.
5. Опыт с одним грузом повторяют не менее трех раз. Затем выполняют измерения с двумя и тремя грузами. Все данные заносят в таблицу 4.1 отчета.
Обработка результатов
1. По формулам (4.6) и (4.7) для каждого значения массы вычисляют момент силы трения в опорах и момент инерции махового колеса, подставляя средние значения времени t и высоты h2 .
2. Находят среднее значение момента инерции махового колеса. Не имеет смысла находить среднее значение момента силы трения, так как при разных нагрузках на вал он должен иметь разные значения.
3. Погрешности измерения момента инерции предлагается оценить для опыта с одним из грузов. Полученное значение относительной погрешности момента инерции можно применить к среднему значению момента инерции. Величины систематических погрешностей измерений высот h1 и h2 следует брать, исходя из реальных условий их измерения. Погрешности измерений масс платформы и грузов равны 0,5г.
4. Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью.
Задание 2. Вычисление момента инерции махового колеса
Необходимо рассчитать момент инерции махового колеса, исходя из его конструкции и геометрических размеров. Плотность железа принять равной 7,8 г/см3. Погрешность этого расчета можно не определять. Рассчитанное значение момента инерции сравнивают с измеренным.
ИЗУЧЕНИЕ ЗАКОНОВ СОХРАНЕНИЯ ЭНЕРГИИ И ИМПУЛЬСА ПРИ УДАРЕ
Цель работы
Ознакомиться с явлением удара на примере соударения подвешенных на нитях шаров.
Идея эксперимента
Исследование упругого и неупругого удара шаров позволяет экспериментально проверить законы сохранения импульса и энергии, на базе которых выведены рабочие формулы, а также установить некоторые закономерности ударов. Проводится сопоставление теоретических выводов и экспериментально полученных результатов.
Теория
Удар - совокупность явлений, возникающих при кратковременном приложении к телу внешних сил, связанных со значительным изменении его скорости за очень краткий промежуток времени. Удар обычно протекает в течение тысячных или даже миллионных долей секунды. Удар называется центральным и прямым, если при ударе центры тяжести тел лежат на линии удара, а их относительная скорость параллельна линии удара. В зависимости от упругих свойств тел, характер удара может изменяться от абсолютно упругого до абсолютно неупругого. Рассеивание энергии при ударе, т.е. переход механической энергии в другие виды, характеризуется коэффициентом восстановления скорости kск или коэффициентом восстановления энергии kэ.
Коэффициент восстановления скорости определяется как отношение модуля относительной скорости тел после удара к модулю относительной скорости тел до удара
, (5.1)
где v1, v2 - скорости тел до удара, u1, u2 - скорости тел после удара.
Коэффициент восстановления энергии определяется как отношение суммарной кинетической энергии тел после удара к суммарной кинетической энергии тел до удара
. (5.2)
Нетрудно убедиться, что для абсолютно упругого удара kэ=1 и kск=1, а для абсолютно неупругого удара kск=0. В реальных ударах 0<kэ<1 и 0<kск<1. Величина коэффициентов восстановления зависит от физических свойств материалов соударяющихся тел, от их формы, а для неупругого удара также в сильной степени зависит от масс соударяющихся тел.
В данной работе изучается центральный удар двух шаров, подвешенных на нитях. Опыты будут ставиться так, что один из шаров до удара покоится.
Упругий удар шаров
Обозначим массы шаров m1 и m2, скорости шаров до удара и , скорости шаров после удара и соответственно. К абсолютно упругому соударению шаров применим как закон сохранения импульса, так и закон сохранения механической энергии
. (5.3)
Решение этой системы уравнений позволяет найти скорости шаров после удара
и , (5.4)
или, разделив числитель и знаменатель этих выражений на m1:
и , (5.5)
где = m2/m1 - отношение масс шаров.
Величина всегда положительна, поэтому второй шар после удара всегда движется в ту же сторону, куда двигался первый шар до удара. Первый же шар после удара может продолжать движение в ту же сторону, что и до удара, если его масса больше массы второго шара (<1), или же отскакивать, если его масса меньше массы второго шара (>1). В случае равенства масс шаров (=1), первый шар после удара останавливается, а второй шар, неподвижный до удара, начинает двигаться со скоростью первого шара (обмен скоростей).
Отношение кинетической энергии , переданной во время удара первоначально покоящемуся шару, к кинетической энергии ударяющего шара определяется соотношением
. (5.6)
Величину f можно условно назвать эффективностью упругого удара. Она дает долю энергии первого шара, которую получил второй шар после удара. Между величинами f и существует взаимно однозначное соответствие, в то время как одному и тому же могут соответствовать множество значений энергии в зависимости от начальных значений скорости . Нужно отметить, что ход f() не зависит от начальной скорости или m1 и m2, а только от отношения m2/m1. Исследование функции (5.6) показывает, что второй шар получает от первого наибольшую энергию в том случае, когда массы шаров равны, т. е. при =1. При этом f=1 и , вся энергия достается второму шару, а первый после удара останавливается.
Как уже указывалось, в реальном ударе часть кинетической энергии шаров переходит во внутреннюю энергию, и в предлагаемом случае, когда , . Поэтому зависимость (5.6) выполняется только с определенной степенью точности.
Неупругий удар шаров
В сущности, любой реальный удар является неупругим. Рассмотрим такой неупругий удар, после которого шары «слипаются» и движутся с одинаковой скоростью . Применяя к этому удару закон сохранения импульса, можно получить выражение для общей скорости шаров после удара
или , (5.7)
где - по-прежнему отношение масс шаров.
Коэффициент восстановления энергии при неупругом ударе равен
. (5.8)
Он оказывается зависимым от отношения масс шаров.
Интересно также вычислить величину, которая показывает, какая часть кинетической энергии соударяющихся шаров преобразуется во внутреннюю энергию. Эту величину можно назвать эффективностью неупругого удара
, (5.9)
где и - суммарные энергии системы до и после удара.
Очевидно, что q, рассматриваемая как функция от , есть неизменная теоретическая функция. В то же время, эта функция, будучи просчитана по результатам измерений энергий и , является экспериментальной и может отличаться от первой.
Экспериментальная установка
Для экспериментального изучения центрального удара шаров используется установка, представленная на рис. 11. Она представляет собой систему двух шаров - левого (Л) и правого (П), подвешенных к штангам 1 на бифилярных (двойных) подвесах. Бифилярные подвесы обеспечивают движение шаров в одной вертикальной плоскости и предотвращают их вращение вокруг вертикальной оси. Длина подвесов устанавливается такой, чтобы в состоянии покоя центры шаров находились на одном уровне вне зависимости от их размеров.
Мгновенные скорости шаров до и после удара можно определить из закона сохранения энергии
.
Отсюда . В данном случае высоту поднятия шара h удобно выразить через угол отклонения шара
, (5.10)
где l - длина подвеса шаров.
Отсчет углов отклонения шаров ведется по правой и левой круговым шкалам 2 со смещенными по горизонтали нулями.
Для удержания шаров в исходном положении установка снабжена двумя электромагнитами 3, которые обесточиваются с помощью тумблеров «Пуск».
К установке прилагается набор шаров, массы которых измерены с относительной погрешностью 1 % .
Проведение эксперимента
Задание 1. Изучение упругого столкновения шаров
Измерения
1. В качестве ударяющего обычно выбирается левый шар. Его отводят на угол 30 - 40, который во всех опытах можно оставлять постоянным. Правый шар, согласно условиям этой работы, до удара должен быть неподвижным и находится в нижнем положении.
2. Перед каждым опытом проводят необходимую регулировку подвесов шаров для того, чтобы удар был центральным. В равновесном состоянии шары должны только касаться друг друга, а их центры должны находиться на одной высоте. Для проверки регулировки проводят несколько пробных соударений.
3. При отсчете углов отклонения шаров глаз нужно располагать так, чтобы он был в створе с обеими нитями. Будем считать углы отклонения шаров вправо - положительными, а углы отклонения влево и соответствующие им скорости - отрицательными. Так как трудно засечь значение двух углов одновременно, каждый опыт приходиться делать дважды: один раз для того, чтобы засечь угол отклонения правого шара, второй раз - левого.
4. Из набора шаров выбирают шар средней массы и укрепляют его на левом подвесе. На правом подвесе вначале укрепляют шар наименьшей массы.
5. Проводят не менее трех опытов для того, чтобы иметь возможность вычислить средние значения углов отклонения.
6. Далее проводят опыты со всеми другими шарами из набора, по очереди подвешивая их на правый подвес. Левый шар можно не менять. Все данные измерений заносят в таблицу 5.1 отчета.
Обработка результатов
1. Для каждого опыта вычисляют скорости шаров до и после удара. Вычисляют коэффициенты восстановления скорости и находят его среднее значение по результатам всех опытов. Вычисляют стандартное отклонение среднего значения коэффициента (табл. 5.2 отчета).
2. Для каждого опыта вычисляют кинетические энергии шаров до и после удара. Вычисляют кинетические энергии системы до и после удара. Вычисляют коэффициенты восстановления энергии и находят его среднее значение по результатам всех опытов. Вычисляют стандартное отклонение среднего значения коэффициента (табл. 5.3 отчета).
3. Подставляя в формулу (5.6) различные значения отношения масс шаров (лучше брать те значения, которые имеются в опыте), вычисляют теоретические значения эффективности упругого удара fтеор.
4. Для каждого опыта вычисляют экспериментальную эффективность упругого удара fэксп., как .
5. Строят графики зависимости теоретического и экспериментального значений эффективности упругого удара от отношения масс шаров (на одних координатных осях). Делают вывод о совпадении теории и эксперимента.
Задание 2. Изучение неупругого столкновения шаров
Измерения
1. Для того чтобы получить неупругий удар шаров к неподвижному шару прикрепляют кусочек пластилина. Необходимо добиться, чтобы после удара шары двигались как одно целое.
2. Слева подвешивается шар средней массы. Правые шары меняются для того, чтобы получить различные отношения масс шаров. Результаты измерения углов отклонения заносят в таблицу 5.4 отчета.
Обработка результатов
1. Для каждого опыта вычисляют скорости и кинетические энергии шаров до и после удара (табл. 5.5 отчета). Вычисляют коэффициенты восстановления энергии шаров. Вычисляют эффективности неупругого удара qэкспер.
2. Подставляя в формулу (5.9) различные значения отношения масс шаров, вычисляют теоретические значения эффективности упругого удара qтеор.
3. Строят графики зависимости теоретического и экспериментального значений эффективности неупругого удара от отношения масс шаров (на одних координатных осях). Делают вывод о совпадении теории и эксперимента.
ОПРЕДЕЛЕНИЕ СКОРОСТИ ПОЛЕТА ПУЛИ МЕТОДОМ БАЛЛИСТИЧЕСКОГО МАЯТНИКА
Цель работы
Изучение практического приложения теории неупругого удара, а также законов сохранения импульса и энергии.
Идея эксперимента
Скорость полета пули обычно достигает значительной величины. Поэтому прямое измерение скорости, т. е. определение времени, за которое пуля проходит известное расстояние, требует специальной аппаратуры. Много проще измерять скорость пули косвенными методами, среди которых широко распространены методы, использующие неупругие соударения, т. е. соударения, в результате которых сталкивающиеся тела соединяются вместе и продолжают движение как целое. К числу методов, основанных на этой идее, относится метод баллистического маятника.
Теория
Баллистический маятник представляет собой тяжелое тело, подвешенное на четырех нитях (рис. 12). Горизонтально летящая пуля попадает в маятник и застревает в нем, - происходит неупругий удар. После удара маятник начинает качаться на нитях, так что его продольная ось остается параллельной самой себе, центр масс перемещается по окружности, а тело в целом движется поступательно.
Соударение пули с маятником происходит в течение очень короткого промежутка времени, но за это время маятник приобретает некоторую скорость и незначительно сдвигается из положения равновесия. При таких малых перемещениях смещение маятника происходит практически без изменения высоты. При соударении пули с маятником справедлив закон сохранения импульса
, (6.1)
где m - масса пули, M - масса маятника, v - скорость пули, V - скорость маятника непосредственно после удара.
Чтобы определить величину V, нужно измерить высоту h, на которую поднимается маятник после удара. Из закона сохранения энергии получается
Подобные документы
Механика твёрдого тела, динамика поступательного и вращательного движения. Определение момента инерции тела с помощью маятника Обербека. Сущность кинематики и динамики колебательного движения. Зависимость углового ускорения от момента внешней силы.
контрольная работа [1,7 M], добавлен 28.01.2010Экспериментальное изучение динамики вращательного движения твердого тела и определение на этой основе его момента инерции. Расчет моментов инерции маятника и грузов на стержне маятника. Схема установки для определения момента инерции, ее параметры.
лабораторная работа [203,7 K], добавлен 24.10.2013Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.
лабораторная работа [491,8 K], добавлен 31.03.2014Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.
лабораторная работа [213,9 K], добавлен 07.02.2011Основной закон динамики вращательного движения твердого тела относительно неподвижной оси. Изучение методических рекомендаций по решению задач. Определение момента инерции системы, относительно оси, перпендикулярной стержню, проходящей через центр масс.
реферат [577,9 K], добавлен 24.12.2010Применение стандартной установки универсального маятника ФПМО-4 для экспериментальной проверки теоремы Штейнера и определения момента инерции твердого тела. Силы, влияющие на колебательное движение маятника. Основной закон динамики вращательного движения.
лабораторная работа [47,6 K], добавлен 08.04.2016Два основных вида вращательного движения твердого тела. Динамические характеристики поступательного движения. Момент силы как мера воздействия на вращающееся тело. Моменты инерции некоторых тел. Теорема Штейнера. Кинетическая энергия вращающегося тела.
презентация [258,7 K], добавлен 05.12.2014Определение коэффициентов трения качения и скольжения с помощью наклонного маятника. Изучение вращательного движения твердого тела. Сравнение измеренных и вычисленных моментов инерции. Определение момента инерции и проверка теоремы Гюйгенса–Штейнера.
лабораторная работа [456,5 K], добавлен 17.12.2010Динамика вращательного движения твердого тела относительно точки, оси. Расчет моментов инерции некоторых простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.
презентация [913,5 K], добавлен 26.10.2016Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.
лабораторная работа [780,2 K], добавлен 30.01.2011