Расчет рабочего режима электрической сети

Особенности расчета параметров схемы замещения ЛЭП. Специфика выполнения расчета рабочего режима сети с учетом конденсаторной батареи. Определение параметров рабочего режима электрической сети итерационным методом (методом последовательных приближений).

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 02.02.2011
Размер файла 890,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

32

33

СОДЕРЖАНИЕ

  • ЗАДАНИЕ НА РГ
  • 1. составление схемы замещения сети
    • 1.1 Расчет параметров схемы замещения ЛЭП
    • 1.2 Определение параметров схемы замещения подстанции
    • 1.3 Составление схемы замещения сети
  • 2. Расчет рабочего режима сети
    • 2.1 Нулевая итерация
    • 2.2 Первая итерация
  • 3. Расчет рабочего режима сети с учетом конденсаторной батареи
    • 3.1 Нулевая итерация
    • 3.2 Первая итерация
  • ЗАКлючение
  • Библиографический список

ЗАДАНИЕ НА РГЗ

От шин районной подстанции 1 по двухпроводной воздушной ЛЭП осуществляется электроснабжение понизительной подстанции 2, на которой установлено два одинаковых трехобмоточных трансформатора Тр 1 и Тр 2. Схема описанной электрической сети представлена на рис. 1. Исходные данные к расчету рабочего режима сети: действующее значение напряжения на шинах узловой подстанции 1 - U1; длина ЛЭП от подстанции 1 до подстанции 2 - L; марка провода ЛЭП; расположение проводов на опорах; среднее расстояние между проводами фаз - D; число проводов в фазе - n; шаг расщепления - аср; тип трансформатора; номинальные напряжения обмоток высшего, среднего и низшего напряжения - UВН/UСН/UНН; нагрузки трансформаторов на сторонах среднего и низшего напряжений соответственно и ) приведены в табл.1.

Таблица 1 - Исходные данные к курсовой работе

Номер варианта

Параметры электрической сети

U1,

кВ

L,

км

Марка провода

Расположение

проводов

D,

м

n

аCР,

мм

Тип

трансформатора

UВН/UСН/UНН,

кВ

,

МВА

,

МВА

32

39

25

АС - 95/16

В вершинах треугольника

4,0

1

-

ТМТН-10000/35

36,75/10,5/6,3

6+j2

7+j1

Рисунок 1 - Схема электрической сети

1. составление схемы замещения сети

1.1 Расчет параметров схемы замещения ЛЭП

Из курса “ТОЭ” известно, что любая длинная линия является линией с распределёнными параметрами, которую можно представить в виде множества соединённых в цепочку элементарных участков, каждый из которых может быть представлен в виде “П” - образной схемы замещения, с одинаковыми значениями погонных параметров ZП и YП, где: ZП = RП + jXП - продольное погонное сопротивление линии; YП = gП +jbП - поперечная погонная проводимость линии. Так как в нашем случае используется относительно короткая ЛЭП (L < 300 км), то распределенностью параметров можно пренебречь и считать их сосредоточенными.

Рассмотрим сначала однопроводную ЛЭП и рассчитаем для нее параметры схемы замещения. Необходимые размеры и сечения провода приведены в табл. 1.1.

Таблица 1.1 - Расчётные данные сталеалюминевого провода АС - 95/16

Sном,

мм2 (алюминий / сталь)

Сечение проводов, мм2

Диаметр провода,

мм

Алюминиевых

Стальных

95/16

95,4

15,9

13,5

Определяется активное сопротивление линии:

(1.1)

где L - длина ЛЭП, км; F - сечение активной части провода, мм2; г - удельная проводимость алюминия.

Согласно (1.1):

Определяется индуктивное сопротивление линии:

(1.2)

где - радиус провода, мм; - среднее геометрическое расстояние между осями соседних фаз, мм; - относительная магнитная проницаемость проводника (алюминия); L - длина ЛЭП, км.

Определяется среднее геометрическое расстояние между осями соседних фаз:

мм. (1.3)

Согласно (1.2):

Ом.

Определяется активная проводимость линии:

(1.4)

где ДРкор - потери активной мощности на корону, кВт; Uн - номинальное напряжение на ЛЭП, кВ.

Определяются потери активной мощности на корону:

(1.5)

где - коэффициент, учитывающий атмосферное давление; Uф - фазное напряжение ЛЭП, кВ; Uф.кор. - фазное напряжение, при котором появляется корона, кВ.

Определяется фазное напряжение ЛЭП:

Определяется фазное напряжение, при котором появляется корона:

(1.6)

где - коэффициент, учитывающий состояние поверхности провода; - коэффициент, учитывающий состояние погоды;

Согласно (1.6):

Фазное напряжение, при котором возникает корона значительно выше действительного (625,524 > 20,2073), поэтому в данной ЛЭП коронирования не будет и соответственно потерь, связанных с ним тоже. Таким образом, активная проводимость в схеме замещения ЛЭП будет отсутствовать.

Определяется реактивная проводимость линии:

(1.7)

где К = 1,05 - коэффициент, учитывающий влияние земли и грозозащитных тросов.

Согласно (1.7):

В нашем задании ЛЭП - двухпроводная, оба участка исследуемой ЛЭП имеют одинаковые параметры и соединены параллельно. То есть предоставляется возможность упростить схему замещения. При этом значения продольных параметров схемы замещения линии уменьшаются вдвое, а значения поперечных увеличиваются в такое же количество раз. Таким образом, полная схема замещения ЛЭП, приведённая на рис. 1.1, соединяющей подстанцию 1 с подстанцией 2 будет иметь следующие значения параметров:

Рисунок 1.1 - Схема замещения ЛЭП

1.2 Определение параметров схемы замещения подстанции 2

Подстанция 2 состоит из двух трансформаторов ТМТН-10000/35, соответствующие обмотки которых соединены параллельно между собой. Рассчитаем параметры схемы замещения одного трансформатора, а затем скорректируем полученные значения для случая параллельного соединения трансформаторов аналогично тому, как поступили с ЛЭП.

Каталожные данные трансформатора типа ТМТН-10000/35 приведены в табл. 1.2.

Таблица 1.2 - Каталожные данные трансформатора типа ТМТН-10000/35

Мощность

SНОМ.ТР, МВА

Тип

Пределы

регулирования напряжения, %

КАТАЛОЖНЫЕ ДАННЫЕ

UНОМ, кВ

UК, %

РК,

кВт

РХ,

кВт

IХ,

%`

ВН

СН

НН

В-С

В-Н

С-Н

10

ТМТН-

10000/35

81,5

36,75

10,5

6,3

16,5

8

7,2

75

18

0,85

Активные сопротивления обмоток (здесь и далее имеются ввиду приведенные значения) трансформатора определяются по формуле:

(1.8)

где - потери короткого замыкания трансформатора, кВт; - номинальное напряжение обмотки ВН трансформатора, кВ; - номинальная мощность трансформатора, кВА.

Активные сопротивления обмоток равны между собой и равны .

Согласно (1.8):

Определяется индуктивные сопротивления обмоток трансформатора.

Сопротивление обмотки ВН:

(1.9)

где - напряжение короткого замыкания обмотки ВН, %; - номинальное напряжение обмотки ВН трансформатора, кВ; - номинальная мощность трансформатора, кВА.

Определяется напряжение короткого замыкания обмотки ВН:

%.

Согласно (1.9):

Ом.

Сопротивление обмотки СН:

(1.10)

где - напряжение короткого замыкания обмотки СН, %.

Определяется напряжение короткого замыкания обмотки СН:

%.

Согласно (1.10):

Ом.

Сопротивление обмотки НН:

(1.11)

где - напряжение короткого замыкания обмотки НН, %.

Определяется напряжение короткого замыкания обмотки НН:

%.

Согласно (1.11):

Ом.

Определяется активная проводимость трансформатора:

(1.12)

где - потери холостого хода трансформатора, кВт.

Согласно (1.12):

Определяется индуктивная проводимость трансформатора:

(1.13)

где - ток холостого хода трансформатора, %.

Согласно (1.13):

Как уже говорилось, на подстанции имеются два одинаковых трансформатора, работающие параллельно. В связи с этим предоставляется возможным упрощение схемы замещения подстанции 2. Продольные параметры схемы замещения одного трансформатора уменьшаются в два раза, а поперечные увеличиваются в такое же количество раз. Значения параметров схемы замещения, представленной на рис. 1.2, будут следующими:

Ом.

Ом.

Рисунок 1.2 - Схема замещения подстанции 2

Ом.

Ом.

См.

См.

1.3 Составление схемы замещения сети

Для составления схемы замещения сети используем схемы замещения ЛЭП и подстанции 2 (рис. 1.1 и рис. 1.2). Схема замещения сети показана на рис. 1.3. Для удобства дальнейших расчетов несколько упростим схему и переобозначим значения параметров. Окончательный вид схема замещения сети будет иметь, как показано на рис. 1.4. Значения параметров схемы замещения приведены в табл. 1.3.

Таблица 1.3 - Значения параметров схемы замещения

b1, См

b2, См

, Ом

, Ом

, Ом

, Ом

, Ом

, См

1,3191·10-4

-3,3067·10-4

3,7652

0,5065

5,3716

5,8412

5,301

2,6656·10-5

Рисунок 1.3 - Схема замещения сети

Рисунок 1.4 - Окончательный вид схемы замещения сети

2. Расчет рабочего режима сети

Схема замещения сети с обозначением распределения мощностей по участкам приведена на рис. 2.1. Расчет рабочего режима будет производиться итерационным методом.

2.1 Нулевая итерация

На нулевой приближенно определяется мощность центра питания сети - SA, в нашем случае это подстанция 1. Расчет ведется, двигаясь от конца сети к началу. Падением напряжения в сети на нулевой итерации пренебрегают и считают, что оно везде одинаково и равно напряжению центра питания - .

Определяется мощность в точке 2 со стороны СН:

(2.1)

где - нагрузка трансформатора на стороне среднего напряжения, МВА; UA - напряжение на шинах узловой подстанции, кВ; R3 - активное сопротивление обмотки среднего напряжения, Ом; Х3 - индуктивное сопротивление обмотки низкого напряжения, Ом.

Согласно (2.1):

Определяется мощность в точке 2 со стороны НН:

(2.2)

Рисунок 2.1 - Схема замещения сети с обозначением распределения мощностей

где - нагрузка трансформатора на стороне низкого напряжения, МВА; R4 - активное сопротивление обмотки низкого напряжения, Ом.

Согласно (2.2):

Определяется суммирующее значение мощности в точке2:

(2.3)

где , - мощности в точке 2 со стороны СН и НН, соответственно, МВА.

Согласно (2.3):

Определяются коэффициенты распределения активной мощности обмотки ВН между обмотками СН и НН обозначим через и соответственно. Реактивной - и . Они будут необходимы для расчета следующей итерации.

Определяется мощность в точке 1 со стороны ВН:

(2.4)

где - суммирующее значение мощности в точке 2, МВА; R2 - активное сопротивление обмотки высокого напряжения, Ом; Х2 - индуктивное сопротивление обмотки высокого напряжения, Ом.

Согласно (2.4):

Определяется мощность в конце ЛЭП:

(2.5)

где - мощность в точке 1 со стороны обмотки ВН, МВА; - активная проводимость трансформатора, См.

Согласно (2.5):

Определяется мощность в начале ЛЭП:

(2.6)

где - мощность в конце ЛЭП, МВА; R1 - активное сопротивление ЛЭП, Ом; Х2 - индуктивное сопротивление ЛЭП, Ом.

Согласно (2.6):

Определяется необходимая мощность центра питания:

(2.7)

где - мощность вначале ЛЭП, МВА; b1 - реактивная проводимость ЛЭП, См.

Согласно (2.7):

Таким образом в завершении нулевой итерации получили ориентировочное значение мощности центра питания.

2.2 Первая итерация

В первой итерации расчет ведется от начала линии к концу. Исходными данными к ней являются напряжение центра питания, которое у нас задано, и мощность центра питания, которую мы получили в результате нулевой итерации. Расчет первой итерации учитывает падение напряжения в линии. Если в завершении данной итерации значения выходящих мощностей обмотки СН и обмотки НН будут отличаться от заданных не более, чем на 5%, то на этом расчет завершится.

Определяется мощность в начале ЛЭП:

(2.8)

где - мощность центра питания, МВА.

Согласно (2.8):

Определяется мощность в конце ЛЭП:

Определяется напряжение в точке 1:

(2.9)

где , - активная и реактивная мощности в точке 1, соответственно.

Согласно (2.9):

Определяется мощность перед обмоткой ВН:

Определяется мощность после обмотки ВН:

Определяется приведённое напряжение в точке 2:

(2.10)

где , - активная и реактивная мощности в точке 2, соответственно.

Согласно (2.10):

Определяется мощность перед обмоткой СН:

(2.11)

где , - коэффициент распределения активной и реактивной мощностей между обмотками ВН и СН.

Согласно (2.11):

Определяется нагрузка на стороне СН:

Определяется приведённое напряжение на стороне СН:

(2.12)

где , - активная и реактивная мощности на стороне СН, соответственно.

Согласно (2.12):

Определяется мощность перед обмоткой НН:

(2.13)

где , - коэффициент распределения активной и реактивной мощностей между обмотками ВН и НН.

Согласно (2.13):

Определяется нагрузка на стороне НН:

Определяется приведённое напряжение на стороне НН:

(2.14)

где , - активная и реактивная мощности на стороне НН, соответственно.

Согласно (2.14):

В результате первой итерации получили значения выходящих мощностей с обмоток СН и НН. Сравним полученные результаты с заданными. Так как мы имеем дело с комплексными величинами, то погрешность должна не превышать 5%.

Определяется погрешность расчёта активной мощности на стороне СН:

(2.15)

где - заданная активная мощность на стороне СН, кВт; - полученное значение активной мощности на стороне СН, кВт.

Согласно (2.15):

Определяется погрешность расчёта реактивной мощности на стороне СН:

(2.16)

где - заданная реактивная мощность на стороне СН, квар; - полученное значение реактивной мощности на стороне СН, квар.

Согласно (2.16):

Определяется погрешность расчёта активной мощности на стороне НН:

(2.17)

где - заданная активная мощность на стороне НН, кВт; - полученное значение активной мощности на стороне НН, кВт.

Согласно (2.17):

Определяется погрешность расчёта реактивной мощности на стороне НН:

(2.18)

где - заданная реактивная мощность на стороне НН, квар; - полученное значение реактивной мощности на стороне НН, квар.

Согласно (2.18):

Как видно погрешность не превышает 5%, поэтому расчет завершается.

Проверим сможет ли подстанция обеспечить номинальное выходное напряжение. В результате первой итерации мы получили следующие значения напряжений:

кВ - напряжение на обмотке ВН трансформатора;

кВ - приведенное значение напряжения на обмотке СН трансформатора;

кВ - приведенное значение напряжения на обмотке НН трансформатора.

Для обеспечения требуемых выходных напряжений (10,5 кВ на СН и 6,3 кВ на НН) приведенные значения напряжений и должны равняться 36,75 кВ. В трансформаторах данного типа предусмотрено регулирование напряжения на стороне ВН от номинального. Определим на какой отпайке трансформатора будет достигнуто требуемое выходное напряжение.

Определяется напряжение одной отпайки:

(2.19)

где - требуемое приведенное значение напряжения, кВ; 1,5 - предел регулирования одной отпайки, %.

Согласно (2.19):

Определяется разница напряжения между требуемым и полученным напряжением:

Определяется необходимое число отпаек:

Определяется уточнённый коэффициент трансформации на стороне НН:

Определяется напряжение на стороне НН с учётом регулирования напряжения на стороне ВН:

Для обеспечения режима максимально близкого к номинальному рекомендуется работа трансформатора без регулирования напряжения на стороне высокого напряжения.

3. Расчет рабочего режима сети с учетом конденсаторной батареи

Схема замещения сети с обозначением распределения мощностей по участкам приведена на рис. 3.1. Расчет рабочего режима будет производиться итерационным методом.

3.1 Нулевая итерация

На нулевой приближенно определяется мощность центра питания сети - SA, в нашем случае это подстанция 1. Расчет ведется, двигаясь от конца сети к началу. Падением напряжения в сети на нулевой итерации пренебрегают и считают, что оно везде одинаково и равно напряжению центра питания - .Мощность конденсаторной батареи равна 1,4 МВАр. Конденсаторная батарея устанавливается на сторону низкой нагрузки.

Согласно (2.1):

Согласно (2.2):

Согласно (2.3):

Рисунок 3.1 - Схема замещения сети с обозначением распределения мощностей

Определяются коэффициенты распределения активной мощности обмотки ВН между обмотками СН и НН обозначим через и соответственно. Реактивной - и . Они будут необходимы для расчета следующей итерации.

Согласно (2.4):

Согласно (2.5):

Согласно (2.6):

Согласно (2.7):

Таким образом в завершении нулевой итерации получили ориентировочное значение мощности центра питания с учетом конденсаторной батареи.

3.2 Первая итерация

В первой итерации расчет ведется от начала линии к концу. Исходными данными к ней являются напряжение центра питания, которое у нас задано, и мощность центра питания, которую мы получили в результате нулевой итерации. Расчет первой итерации учитывает падение напряжения в линии. Если в завершении данной итерации значение напряжения на низкой стороне будет отличаться от заданного не более, чем на 5%, то на этом расчет завершится.

Согласно (2.8):

Определяется мощность в конце ЛЭП:

Согласно (2.9):

Определяется мощность перед обмоткой ВН:

Определяется мощность после обмотки ВН:

Согласно (2.10):

Согласно (2.13):

Определяется нагрузка на стороне НН:

Согласно (2.14):

Определяется напряжение на стороне НН с учётом конденсаторной батареи:

Определяется погрешность расчёта напряжения на стороне НН:

(2.15)

где - заданное напряжение на стороне НН, кВ; - полученное значение напряжения на стороне НН, кВ.

Согласно (2.15):

Так как погрешность не превышает 5% , то расчет на этом заканчивается.

ЗАКлючение

В данной работе был проведён расчёт параметров рабочего режима электрической сети итерационным методом (методом последовательных приближений). В первом приближении (нулевая итерация) априорным путём было получено первоначальное распределение мощностей по участкам сети. Во втором приближении (первая итерация) были уточнены мощности на каждом из участков и определены напряжения в узлах сети. В результате расчётные нагрузочные мощности на сторонах среднего и низшего напряжений совпали с заданными мощностями в пределах допустимой погрешности.

Напряжения, полученные в результате расчета на обмотках СН и НН были близки к номинальным, поэтому был рекомендован режим работы трансформатора без регулирования напряжения на стороне высокого напряжения.

Также в данной работе был произведен расчет параметров электрической сети с учетом конденсаторной батареи установленной на стороне низкого напряжения. В результате полученное напряжение на низкой стороне совпало с заданным в пределах допустимой погрешности.

Библиографический список

1. Шпиганович, А.Н. Методические указания к оформлению учебно-технической документации. [Текст] / А.Н. Шпиганович, В.И. Бойчевский, Липецк: ЛГТУ, 1997. - 32 с.

2. Шпиганович, А.Н. Методические указания и контрольные задания к расчётно-графическому заданию “Расчёт режимов электрических сетей”. [Текст]/ А.Н. Шпиганович, В.И. Бойчевский, Липецк: ЛГТУ, 1997. - 14 с.

3. Веникова, В.А. Расчёты и анализ режимов работы сетей: Учеб. пособие для вузов. [Текст]/ В.А. Веникова. М.: Энергия, 1974. - 336 с.


Подобные документы

  • Электрические схемы разомкнутой и кольцевой сетей. Определение параметров установившегося режима электрической сети методом "в два этапа". Формирование уравнений узловых напряжений. Баланс мощности. Таблица параметров режима разомкнутой сети, его карта.

    курсовая работа [3,0 M], добавлен 22.09.2013

  • Построение схем замещения и параметров воздушных линий электропередач. Определение приведенной мощности на понижающей подстанции. Упрощенная схема замещения электрической сети. Расчет установившегося режима электрической сети с применением ЭВМ.

    курсовая работа [711,2 K], добавлен 07.06.2021

  • Расчет параметров заданной электрической сети и одной из выбранных трансформаторных подстанций. Составление схемы замещения сети. Расчет электрической части подстанции, электромагнитных переходных процессов в электрической сети и релейной защиты.

    дипломная работа [1,0 M], добавлен 29.10.2010

  • Формирование узловых и контурных уравнений установившихся режимов электрической сети. Расчет режима электрической сети по линейным узловым и контурным уравнениям при задании нагрузок в токах. Расчет режима электрической сети по узловым уравнениям.

    курсовая работа [123,4 K], добавлен 09.03.2012

  • Этапы разработки схемы и расчёт режима районной электрической сети. Особенности выбора номинальных напряжений линий электропередач и подстанций. Способы проверки выбранных сечений по условиям короны. Основное назначение трансформаторной станции.

    курсовая работа [858,8 K], добавлен 12.03.2013

  • Расчет трехфазного короткого замыкания в сложной электрической системе: параметров, схемы замещения, тока и аварийного режима, коэффициентов токораспределения, остаточных напряжений. Расчет режима несимметричного КЗ методом симметричных составляющих.

    курсовая работа [5,7 M], добавлен 15.05.2012

  • Расчет параметров схем замещения воздушных линий электропередач, параметров автотрансформаторов, напряжений на подстанциях, приведенной мощности на понижающей подстанции. Расчет потоков мощности в электрической сети и потокораспределения в кольцевой сети.

    курсовая работа [319,2 K], добавлен 14.05.2013

  • Определение параметров схемы замещения электрической системы. Формирование матрицы узловых проводимостей. Схемы замещения элементов электрической системы и ее расчет. Диагональная матрица проводимостей ветвей. Нелинейные уравнения установившегося режима.

    курсовая работа [698,6 K], добавлен 16.11.2009

  • Особенности развития электрических сетей района энергосистемы. Анализ технико-экономического расчета первого и второго вариантов развития сети, их схемы. Характеристика и основные признаки статической устойчивости. Расчет послеаварийного режима сети.

    дипломная работа [3,2 M], добавлен 15.04.2012

  • Определение параметров элементов электрической сети и составление схем замещения, на основе которых ведётся расчёт режимов сети. Расчёт приближенного потокораспределения. Выбор номинального напряжения участков электрической сети. Выбор оборудования.

    курсовая работа [1,2 M], добавлен 14.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.