Аппроксимация функции к полиному n степени методом наименьших квадратов

Аппроксимация – процесс замены таблично заданной функции аналитическим выражением кривой. Алгоритм нахождения зависимости между заданными переменными. Условия сходимости итераций к решению системы уравнений. Методы Якоби и Гаусса. Тестирование программы.

Рубрика Программирование, компьютеры и кибернетика
Предмет Программирование
Вид курсовая работа
Язык русский
Прислал(а) Nickk
Дата добавления 28.08.2012
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет аппроксимаций в табличном процессоре Excel. Описание программы на языке Turbo Pascal; анализ результатов ее работы.

    курсовая работа [390,2 K], добавлен 02.01.2015

  • Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет коэффициентов аппроксимации, детерминированности в Microsoft Excel. Построение графиков функций, линии тренда.

    курсовая работа [590,9 K], добавлен 10.04.2014

  • Развитие навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью электронно-вычислительных машин. Схема алгоритма. Назначение функции Линейн и метода наименьших квадратов.

    курсовая работа [340,4 K], добавлен 17.12.2014

  • Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).

    курсовая работа [473,6 K], добавлен 09.02.2015

  • Основные методы и алгоритмы исследования. Нахождение минимума среднеквадратичного отклонения. Особенности решения нормальных уравнений. Параметры линейной аппроксимирующей функции. Расчет значений аппроксимирующей функции и среднеквадратичного уклонения.

    курсовая работа [749,3 K], добавлен 08.06.2019

  • Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.

    курсовая работа [990,8 K], добавлен 23.10.2011

  • Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.

    курсовая работа [956,7 K], добавлен 04.03.2013

  • Выбор кривой разгона, ее аппроксимация апериодическим звеном первого порядка с запаздыванием. Поиск соотношения угла наклона, оптимальных настроек регулятора, передаточной функции замкнутой системы. Моделирование АСР с использованием программы 20-sim.

    контрольная работа [630,5 K], добавлен 11.05.2012

  • Обзор методов аппроксимации. Математическая постановка задачи аппроксимации функции. Приближенное представление заданной функции другими, более простыми функциями. Общая постановка задачи метода наименьших квадратов. Нахождение коэффициентов функции.

    курсовая работа [1,5 M], добавлен 16.02.2013

  • Определение зависимости между экспериментальными данными при помощи аппроксимации, особенности решения поставленной задачи различными способами, проведение расчетов с помощью табличного процессора Microsoft Excel и среды программирования Turbo Pascal 7.0.

    курсовая работа [765,0 K], добавлен 25.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.