Аппроксимация функции к полиному n степени методом наименьших квадратов
Аппроксимация – процесс замены таблично заданной функции аналитическим выражением кривой. Алгоритм нахождения зависимости между заданными переменными. Условия сходимости итераций к решению системы уравнений. Методы Якоби и Гаусса. Тестирование программы.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.08.2012 |
Размер файла | 1,4 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет аппроксимаций в табличном процессоре Excel. Описание программы на языке Turbo Pascal; анализ результатов ее работы.
курсовая работа [390,2 K], добавлен 02.01.2015Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет коэффициентов аппроксимации, детерминированности в Microsoft Excel. Построение графиков функций, линии тренда.
курсовая работа [590,9 K], добавлен 10.04.2014Развитие навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью электронно-вычислительных машин. Схема алгоритма. Назначение функции Линейн и метода наименьших квадратов.
курсовая работа [340,4 K], добавлен 17.12.2014Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).
курсовая работа [473,6 K], добавлен 09.02.2015Основные методы и алгоритмы исследования. Нахождение минимума среднеквадратичного отклонения. Особенности решения нормальных уравнений. Параметры линейной аппроксимирующей функции. Расчет значений аппроксимирующей функции и среднеквадратичного уклонения.
курсовая работа [749,3 K], добавлен 08.06.2019Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.
курсовая работа [990,8 K], добавлен 23.10.2011Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.
курсовая работа [956,7 K], добавлен 04.03.2013Выбор кривой разгона, ее аппроксимация апериодическим звеном первого порядка с запаздыванием. Поиск соотношения угла наклона, оптимальных настроек регулятора, передаточной функции замкнутой системы. Моделирование АСР с использованием программы 20-sim.
контрольная работа [630,5 K], добавлен 11.05.2012Обзор методов аппроксимации. Математическая постановка задачи аппроксимации функции. Приближенное представление заданной функции другими, более простыми функциями. Общая постановка задачи метода наименьших квадратов. Нахождение коэффициентов функции.
курсовая работа [1,5 M], добавлен 16.02.2013Определение зависимости между экспериментальными данными при помощи аппроксимации, особенности решения поставленной задачи различными способами, проведение расчетов с помощью табличного процессора Microsoft Excel и среды программирования Turbo Pascal 7.0.
курсовая работа [765,0 K], добавлен 25.02.2012