Информатика. Алгоритмизация и программирование

Расчет максимальной мощности двигателя автомобиля и расчет внешней характеристики двигателя. Вычислить функцию. Метод деления отрезка пополам на данном интервале и найти с точностью корни уравнения. Вычислить определенный интеграл методом прямоугольников.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 13.02.2007
Размер файла 233,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской федерации

Федеральное агентство по образованию

Саратовский Государственный Технический Университет

Кафедра «Информатика»

Курсовая работа

Тема: «Информатика. Алгоритмизация и программирование»

  • Выполнил
  • студент АМФ ПСМ-21
  • Зеленин-Адамов С.Г.
  • Номер зачетки 040106
  • Проверил ассистент
  • кафедры «Информатика»
  • Можаева Н.А.
  • Саратов 2006
  • СОДЕРЖАНИЕ
  • Задача 1. 3
  • Задача 2. 7
  • Задача 3 10
  • Задача 4. 13
  • Задача 5. 17
  • Список использованной литературы 21

Задача 1.

Выполнить расчет максимальной мощности двигателя автомобиля и расчет внешней характеристики двигателя при следующих начальных условиях:

mo,

кг

Vmax, км/ч

Kв

кг/м3

F,

м2

Шv

nN

мин-1

Kv

зтр

6000

100

0,62

3,9

0,021

3000

1,2

0,88

РЕШЕНИЕ.

Максимальная мощность двигателя тягача по условию обеспечения заданной максимальной скорости рассчитывается по формуле:

, (1)

где Nemax- искомая максимальная мощность, кВт;

Nv - мощность на режиме максимальной скорости, кВт;

Kv - отношение частоты вращения коленчатого вала двигателя при максимальной скорости движения тягача к номинальной частоте вращения:

, (2)

nN- частота вращения коленчатого вала двигателя на режиме максимальной мощности (номинальная), мин-1

nv- частота вращения коленчатого вала двигателя при максимальной скорости автомобиля, мин-1.

Мощность на режиме максимальной скорости определяется по формуле (3):

, (3)

где m0 - масса тягача, кг;

Шv - суммарный коэффициент сопротивления дороги;

V max - заданная максимальная скорость тягача;

зтр - КПД трансмиссии;

Kв - коэффициент сопротивления воздуха, кг/м3;

F - лобовая площадь тягача, м2.

Внешняя характеристика двигателя представляет собой зависимость мощности, крутящего момента от частоты вращения коленчатого вала двигателя при полном открытии заслонки карбюратора.

При известном значении максимальной мощности Nemax мощность в любой другой точке характеристики может быть найдена по формуле Лейдермана:

(4)

где Ne - мощность двигателя при произвольном значении частоты вращения коленчатого вала, кВт;

Nemax - максимальная мощность двигателя, кВт;

n - заданная частота вращения коленчатого вала, мин-1;

nN - частота вращения коленчатого вала на режиме максимальной мощности, мин-1;

a,b,c - коэффициенты, принимаемые для бензиновых двигателей, равны 1.

Крутящий момент в любой точке характеристики определяется по формуле:

Me=9549 (Ne/ n), (5)

Составим схему алгоритма. В алгоритме будет три блока: ввод исходных данных, расчет по формулам(1)-(5) и вывод результата.

По приведенной блок-схеме была составлена программа, листинг которой приведен ниже.

program lab1;

var m0,vmax,Ke,F,Fv,nN,Ky,n_tr:real; {peremennye - ishodnye dannye}

Nv,Ne_max,n_v,Ne,Me:real; {peremennye - rezultaty}

BEGIN

{-----------VVOD ISHODNYH DANNYH-----}

writeln ('Vvedite ishodnye dannye:');

write ('m0=');readln(m0);

write ('Vmax=');readln(Vmax);

write ('Ke=');readln(Ke);

write ('F=');readln(F);

write ('Fv=');readln(Fv);

write ('nN=');readln(nN);

write ('Ky=');readln(Ky);

write ('n_tr=');readln(n_tr);

{----------RASCHET-------------------}

Nv:=2.725E-03*m0*Fv*Vmax/n_tr+2.14e-05*Ke*F*sqr(Vmax)*Vmax/n_tr;

Ne_max:=Nv/(Ky*(1+Ky*(1+Ky)));

n_v:=Ky*nN;

Ne:=Ne_max*(n_v/nN+sqr(n_v/nN)-sqr(n_v/nN)*n_v/nN);

Me:=9549*(Ne/n_v);

{----------VIVOD REZULTATA-----------}

writeln('Nv=',Nv);

writeln('Ne_max=',Ne_max);

writeln('n_v=',n_v);

writeln('Ne=',Ne);

writeln('Me=',Me);

End.

Решение этой же задачи было проведено в ЭТ Excel. Ниже представлен лист с решением и результатами.

Программу написанную на языке Паскаль копирую и вставляю в проект, затем исправляю существенные различия.

Задача 2.

Вычислить функцию , для с шагом .

a

b

h

f(x)

Начало отрезка

Конец отрезка

Шаг по отрезку

9

-12

0

1

РЕШЕНИЕ

Выполним схему алгоритма.


Эта схема была реализована на языке Паскаль в трех вариантах: были задействованы циклы с предусловием, с постусловием и с параметром. Листинги программ приведены ниже.

а) Цикл с постусловием

program lab21;

var x,f:real;

begin

x:=-12;

repeat

if x<-7 then f:=sin((3.14/12)*x)

else

if x<=-3 then f:=2*cos((3.14/6)*x+(3.14/12))

else

f:=5* sin((3.14/12)*x);

writeln('f(',x:3:1,')=',f:6:2);

x:=x+1;

until x>0;

readln;

end.

б) Цикл с предусловием

program lab22;

var x,y:real;

begin

x:=-12;

while x<=0 do

begin

if x<-7 then y:= sin((3.14/12)*x)

else

if x<=-3 then y:= 2*cos((3.14/6)*x+(3.14/12))

else

y:= 5* sin((3.14/12)*x);

writeln('f(',x:3:1,')=',y:6:2);

x:=x+1;

end;

readln;

end.

в) Цикл с параметром

program lab23;

var

x,y,a,b,h,n1: real;

n ,i : integer;

begin

x:=-12;

a:=-12;b:=0;h:= 1;

n1:=(b-a)/h; n:=round(n1);

for i:=0 to n do

begin

if x<-7 then y:= sin((3.14/12)*x)

else

if x<=-3 then y:= 2*cos((3.14/6)*x+(3.14/12))

else

y:= 5* sin((3.14/12)*x);

writeln('f(',x:3:1,')=',y:6:2);

x:=x+1;

end;

readln;

end.

Решение этой же задачи было проведено в Excel. При вычислении функции использовалась логическая функция ЕСЛИ. Лист с решением задачи размещен ниже.

Программу написанную на языке Паскаль копирую и вставляю в проект, затем исправляю существенные различия.

Задача 3

Применить метод деления отрезка пополам на интервале и найти с точностью корни уравнения .

9

-3

0

РЕШЕНИЕ

Алгоритм метода половинного деления заключается в следующем:

1. Выбрать нулевое приближение x0=(a+b)/2.

2. Если f(x0)=0, то x0 очевидно является корнем уравнения.

3. Если f(x0)?0, то проверить условия f(x0f(a)<0 и f(x0f(b)<0 и выбрать тот из отрезков [a, х0], [х0, b], на границах которого выполнено одно из этих условий (т.е. функция f(х) имеет на концах отрезка противоположные знаки).

4. Выбранный отрезок вновь разделить пополам и вычислить значение x1.

5. Для х1 проверить условие f1)=0 и, если оно не выполняется, вернуться к п. 4.

6. Процесс деления отрезков пополам продолжить до тех пор, пока длина отрезка, на концах которого функция имеет противоположные знаки, не будет меньше .

7. Принять, что условие f(xk)= 0 выполнено, если

Ниже приведены блок-схема алгоритма и листинг программы на языке Паскаль.

Program lab3;

function f1 (x: real): real;

begin

f1:=cos(0.2*x*x-2);

end;

var

x,a,b,e: real;

iteraz: integer;

begin

write ('Input a = '); readln (a);

write ('Input b = '); readln (b);

write ('Input e = '); readln (e);

iteraz:=0;

x:=(a+b)/2;

while (f1(x)<>0) and (abs(a-b)>e) do

begin

x:=(a+b)/2;

iteraz:=iteraz+1;

if (f1(a)*f1(x))<0 then b:=x

else a:=x;

writeln ('n=', iteraz,' x=', x:3:6,' f(x)=', f1(x):3:6);

end;

readln;

end.

Решение этой задаче было проведено и в MS Excel. Лист с решением задачи и ответом приведен ниже.

Задача 4.

Вычислить определенный интеграл методом прямоугольников: или трапеций, на выбор.

, , , , с точностью .

Формула метода прямоугольников:

Формула метода трапеций: .

9

-3р

0

РЕШЕНИЕ

Алгоритм метода трапеций заключается в следующем:

1. Отрезок [a,b] разбивается на n равных частей.

2. Интеграл представляет собой площадь криволинейной трапеции, ограниченной осью OX, прямыми x=a и x=b и графиком функции. Очевидно, что интеграл от функции на отрезке равен сумме интегралов от этой же функции на каждом из маленьких отрезков, полученных в результате разбиения. Но на каждом из маленьких отрезков мы приближенно заменяем площадь криволинейной трапеции на площадь прямолинейной трапеции с основанием (высотой), равным длине маленького отрезка, и высотами (основаниями) f(xn) и f(xn+1), где xn - левая граница отрезка, xn+1 - правая граница отрезка. Основание (высота трапеции) равно
(b-a)/n, и таким образом площадь трапеции равна
(f(xn)+f(xn+1))(b-a)/2n. У нас всего n трапеций, причем каждые две соседние трапеции имеют одинаковые высоты (основания). Таким образом, в сумму каждое из f(xn) кроме f(a) и f(b) войдет дважды, и таким образом весь интеграл вычисляется как , где .

3. В методе трапеций не определен шаг (количество отрезков разбиения). Очевидно, что чем больше количество отрезков, тем более точным будет результат. Поэтому, задаем начальное значение n (например n=10) и вычисляем интеграл.

4. После этого удваиваем n и снова вычисляем интеграл (п. 2). Сравнивая полученные результаты, делаем вывод, достигнута ли требуемая точность.

5. Если результаты отличаются друг от друга меньше чем на е, то требуемая точность достигнута. Если нет, то снова удваиваем n и вычисляем интеграл еще раз (возвращаемся к п. 4).

Ниже представлена блок-схема алгоритма и листинг программы.

program pr4;

uses crt;

var

h,a,b,S,dS,P,x,eps:real;

n,i:integer;

function f(x:real) : real;

begin

f:=0,1*sin(0.1*x+0.0025*x*x)/cos(0.1*x+0.0025*x*x);

end;

begin

clrscr;

writeln('input a,b,n,eps, please');

write('a');

readln(a);

write('b');

readln(b);

write('n');

readln(n);

write('eps');

readln(eps);

s:=0;

repeat P:=S;

h:=(b-a)/2;

S:=0;

x:=a;

for i:= 1 to n do

begin

x:=x+h;

S:=S+f(x);

end;

S := S*h;

write('n=',n:3,' h=',h:12:9);

n:=n*2;

until abs(P-S)/(s*100)<eps;

writeln;

writeln('Result S=',S:10:6,' dS=',dS:12:9);

writeln;

writeln('Process ended');

writeln('Press any key to exit');

repeat until keypressed;

end.

Данная задача была решена также в MS Excel. Лист с решением задачи приведен ниже. Требуемая точность была достигнута при n=10.

Программа выполненная на языке Microsoft Visual Basic 6.0

Private Sub Command1_Click()

Dim i As Integer

Dim x(1 To 40) As Double

Dim f(1 To 40) As Double

Dim f1(1 To 40) As Double

Dim s(1 To 40) As Double

a = -3 * 3.14

b = 0

e = 0.1

n = 40

h = (b - a) / n

i = 1

x(i) = a

f(i) = 0.1 * Tan(0.1 * x(i) + 0.025 * x(i) ^ 2)

f1(i) = f(i)

s(i) = h * f(i)

For i = 2 To n

x(i) = x(i - 1) + h

f(i) = 0.1 * Tan(0.1 * x(i) + 0.025 * x(i) ^ 2)

f1(i) = f1(i - 1) + f(i)

s(i) = h * f1(i)

Next

For i = 1 To n

Print " s="; s(i)

Next

If Abs(s(n) - s(n - 1)) < e Then Print "удвойте n"

End Sub

Private Sub Form_Load()

End Sub

Задача 5.

Дана прямоугольная матрица Ci,j,, размером . Если данная матрица является квадратной, найти сумму элементов главной диагонали, в противном случае найти сумму всех членов матрицы.

РЕШЕНИЕ

Составим схему алгоритма.

Program Lab_5;

uses crt;

var

i,j,m,n:integer;

b,a : array[1..10,1..10] of real;

s : real;

begin

clrscr;

write ('chislo stolbcov n='); Readln(n);

write ('chislo strok m='); readln (m);

begin

if m=n then

s:=0;

for i := 1 to n do

begin

for j := 1 to m do

begin

write('a[',i,',',j,']='); readln(a[i,j]);

end;

writeln;

end;

begin

if i=j then s:=s+a[i,j];

writeln(s:6:3);

end;

if i<>j then

begin

s:=0;

for i := 1 to n do

begin

for j := 1 to m do

begin

s:=s+a[i,j];

end;

writeln(s:6:3);

end;

end;

readln;

end;

end.

Данная задача была решена также в MS Excel. Лист с решением задачи приведен ниже.

Программа выполненная на языке Microsoft Visual Basic 6.0

Private Sub Command1_Click()

Dim i, j, m, n As Integer

Dim s As Double

Dim c(1 To 50, 1 To 50) As Double

m = 3

n = 3

For i = 1 To m

For j = 1 To n

c(i, j) = 7 * i - j

Next

Next

s = 0

For i = 1 To m

For j = 1 To n

If m = n Then s = s + c(i, i) Else s = s + c(i, j)

Next

Next

Print s

End Sub

Private Sub Form_Load()

End Sub

Список литературы

1. Информатика: Базовый курс. / С. В. Симонович и др. СПб.: Питер, 2005

2. Острейковский В. А. Информатика: Учеб. для вузов. - М.: Высш. шк., 2000. - 511 с.: ил.

3. Алексеев Е. В. и др. Вычислительная техника и программирование. Практикум по программированию: Практ. пособие / В. Е. Алексеев, А. С. Ваулин, Г. Б. Петрова; Под ред. А. В. Петрова. - М.: Высш. шк., 1991. - 400 с.: ил

4. Глушаков С. В., Мельников И. В. Персональный компьютер: Учебный курс / Худож. оформитель А. С. Юхтман. - Харьков: Фолио; М.: ООО «Издательство АСТ», 2001. - 520 с. - (Домашняя б-ка).

5. Леонтьев В. Новейшая энциклопедия персонального компьютера. - М.: ОЛМА-ПРЕСС, 1999. - 640 с.

6. Козлов В.В., Можаева Н.А., Зуева Н.Г. Информатика. Алгоритмизация и программирование. Мет. Указания и задания к курсовой работе,2006. -32с


Подобные документы

  • Разработка программного обеспечения для решения нелинейного уравнения методом деления отрезка пополам, методом деления Гаусса. Алгоритм определения и методика уточнения корней. Составление и тестирование программы, ее листинг и оценка эффективности.

    контрольная работа [638,0 K], добавлен 16.12.2013

  • Методы решения нелинейных уравнений: прямые и итерационные. Методы решения трансцендентных, алгебраических уравнений. Метод деления отрезка пополам, Ньютона, простой итерации. Поиск корня уравнения методом простой итерации с помощью электронных таблиц.

    контрольная работа [2,4 M], добавлен 16.12.2011

  • MPI - библиотека передачи сообщений на языке программирования C/C++, ее переносимость, стандартизация, эффективная работа, функциональность. Форматы фактических вызовов MPI. Метод прямоугольников для приближенного вычисления определенного интеграла.

    курсовая работа [286,0 K], добавлен 20.06.2012

  • Методика и основные этапы процесса поиска уравнения по методу половинного деления, его сущность и содержание, анализ результатов. Порядок вычисления экстремумов функции методом перебора. Расчет определенного интеграла по методу правых прямоугольников.

    контрольная работа [200,9 K], добавлен 20.01.2014

  • Методика разработки программного модуля для нахождения методом хорд корня уравнения x3-x-0,3=0 с точностью до 0,001 на языке программирования Visual Basic for Application. Схема программного модуля и описание процедуры обработки кнопки "Найти корни".

    курсовая работа [394,0 K], добавлен 08.09.2010

  • Программа вычисления интеграла методом прямоугольников. Решение задачи Коши для дифференциальных уравнений. Модифицированный метод Эйлера. Методы решения краевой задачи для обыкновенного дифференциального уравнения. Задачи линейного программирования.

    методичка [85,2 K], добавлен 18.12.2014

  • Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.

    курсовая работа [1,3 M], добавлен 21.09.2011

  • Разработка программы на языке высокого уровня, позволяющей для заданной функции рассчитать определенный интеграл приближенным и точным методом, оценить погрешность и вывести результаты на консоль. Определение площади методом входящих прямоугольников.

    курсовая работа [225,4 K], добавлен 18.08.2012

  • Идея численного интегрирования. Создание программы, вычисляющей определенный интеграл методом трапеций. Листинг программы, результаты работы. Проверка в среде Mathcad. Зависимость точности вычисления от количества отрезков разбиения, расчет погрешности.

    отчет по практике [106,8 K], добавлен 28.04.2013

  • Построение графика функции. Поиск корней уравнения методом половинного деления. Определение минимума функции методом перебора и значения аргумента. Вычисление определенного интеграла на заданном отрезке с использованием метода правых прямоугольников.

    контрольная работа [316,1 K], добавлен 13.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.