лабораторная работа Синтез оптимального программного управления электроприводом методом вариационного исчисления
Теоретические основы вариационного исчисления и область применения метода. Практическое решение задач оптимизации методом вариационного исчисления. Нахождение экстремума функционала и частных производных. Составление дифференциального уравнения Эйлера.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 16.12.2014 |
Размер файла | 99,5 K |
Подобные документы
Рассмотрение двух методов нахождения приближенного корня дифференциального уравнения, применение их на практике. Графическая интерпретация метода Эйлера. Решение задачи усовершенствованным методом Эйлера. Программная реализация, блок-схемы и алгоритм.
курсовая работа [246,8 K], добавлен 17.06.2013Дифференциальные уравнения как уравнения, в которых неизвестными являются функции одного или нескольких переменных, причем в уравнения входят не только сами функции, но и их производные. Решение операторным методом, с помощью рядов, методом Эйлера.
курсовая работа [301,4 K], добавлен 27.03.2011Решение систем алгебраических линейных уравнений методом Гаусса. Вычисление обратной матрицы и определителя. Декомпозиция задачи. Схема взаимодействия интерфейсных форм. Описание процедур и функций. Тестирование разработанного программного продукта.
курсовая работа [1,1 M], добавлен 05.06.2012Численный метод для решения однородного дифференциального уравнения первого порядка методом Эйлера. Решение систем дифференциальных уравнений методом Рунге–Кутта. Решение краевой задачи. Уравнения параболического типа, а также Лапласа и Пуассона.
курсовая работа [163,5 K], добавлен 27.05.2013Решение дифференциального уравнения N-го порядка методом интегрирования при помощи характеристического уравнения, методом интегрирования и операторным методом для значений аргументов при заданных начальных условиях и нулевых уравнения 4–го порядка.
практическая работа [806,9 K], добавлен 05.12.2009Математические основы оптимизации. Постановка задачи оптимизации. Методы оптимизации. Решение задачи классическим симплекс методом. Графический метод. Решение задач с помощью Excel. Коэффициенты целевой функции. Линейное программирование, метод, задачи.
реферат [157,5 K], добавлен 21.08.2008Разработка прикладного программного обеспечения для решения расчетных задач для компьютера. Численное интегрирование - вычисление значения определённого интеграла. Проектирование алгоритма численного метода. Тестирование работоспособности программы.
курсовая работа [1,1 M], добавлен 03.08.2011Принцип и значение метода Эйлера для расчета дифференциальных уравнений. Анализ его геометрического смысла. Улучшение метода за счет аппроксимации производной. Разработка блок-схем и программы на языке Turbo Pascal для проверки методов интегрирования.
курсовая работа [385,7 K], добавлен 15.06.2013Численное решение задачи Коши для обыкновенного дифференциального уравнения первого и второго порядка методом Эйлера и Рунге-Кутты и краевой задачи для ОДУ второго порядка с применением пакета MathCad, электронной таблицы Excel и программы Visual Basic.
курсовая работа [476,2 K], добавлен 14.02.2016Преобразование формулы и решение ее с помощью Метода Эйлера. Моделирование метода оптимизации с функцией Розенброка. Поиск модели зашумленного сигнала. Нахождение минимума заданной целевой функции методом покоординатного спуска нулевого порядка.
курсовая работа [1,2 M], добавлен 21.12.2013