Реализация и анализ цифрового фильтра с конечной импульсной характеристикой
Расчет цифрового фильтра нижних частот с конечной импульсной характеристикой. Синтез фильтра методом окна (параболического типа). Свойства фильтра: устойчивость, обеспечение совершенно линейной фазочастотной характеристики. Нахождение спектра сигнала.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.07.2009 |
Размер файла | 28,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Контрольная работа
Тема:
«Реализация и анализ цифрового фильтра с конечной импульсной характеристикой»
«Цифровая обработка сигналов»
Вариант №8
Задание:
1. Разработать алгоритм, реализующий заданный тип фильтра в частотной области (с использованием алгоритма БПФ).
2. Составить программу, позволяющую получить:
- спектр входного сигнала;
- спектральную (амплитудно-частотную) характеристику окна;
- отклик фильтра на заданный сигнал;
- спектр выходного сигнала.
3. Проанализировать полученные результаты.
Решение:
Математическая запись сигнала во времени:
Найдем спектр заданного сигнала, для этого воспользуемся прямым преобразованием Фурье:
Затем найдем энергетический спектр сигнала, для этого возведем в квадрат модуль спектра сигнала:
Энергетический спектр сигнала имеет форму колокола, симметричного относительно начала координат, расходящийся по оси частот до бесконечности в обе стороны. Но так как фильтр с бесконечной полосой пропускания реализовать физически невозможно, определим верхнюю частоту с учетом того, что в задании полоса ФНЧ задается по уровню -3 дБ, т.е. по уровню половинной мощности:
Выразив , получаем: .
Дискретный сигнал, соответствующий заданному аналоговому сигналу будет выглядеть следующим образом:
Определим значение произведения , исходя из требования обеспечения уровня неопределённости (или наложения спектров) не хуже -13 дБ. Само же наложение спектров имеет место вследствие дискретизации сигнала (при невыполнении теоремы В.А. Котельникова), которая приводит к периодизации спектра сигнала с частотой .
Исходя из вышесказанного, для определения , сначала, найдём энергию сигнала, распределённую на участке от нуля до половины частоты дискретизации.
Далее, определим энергию, распределённую в диапазоне от половины частоты дискретизации до бесконечности:
Соотношение энергий будет задавать требуемый уровень неопределённости, а именно:
Решив это уравнение, получаем что, произведение = 0,238.
Теперь следует определить число отсчётов N, которое укладывается в периоде повторения Тп при частоте дискретизации равной 1/. Для этого найдем эффективную длительность импульса:
Получаем, что число отсчетов, укладывающееся в периоде повторения равно:
.
Найдем порядок ФНЧ:
Так как полоса фильтра равна единице, то частота среза ФНЧ будет равна:
При сопоставлении частоты среза ?ср ФНЧ и верхней частоты ?в спектра сигнала получаем ориентировочный порядок L однородного фильтра. Исходя из того, что однородный фильтр является ФНЧ с полосой пропускания на уровне половинной мощности примерно равной /L.
Полученное значение округляем до целого числа, в итоге получаем L=13.
Теперь можно приступить к синтезу фильтра. Алгоритм, позволяющий получить спектр входного сигнала. АЧХ «окна», АЧХ и ИХ фильтра, отклик фильтра на заданный сигнал, а также спектр выходного сигнала реализован в пакете MathCAD.
Выводы:
В данной работе был рассчитан цифровой фильтр ФНЧ с конечной импульсной характеристикой. Такие фильтры обладают рядом положительных свойств: они всегда устойчивы, позволяют обеспечить совершенно линейную фазочастотную характеристику (постоянное время запаздывания).
Синтез фильтра производился методом окна. По заданию был задан параболический тип окна.
Сначала были найдены параметры сигнала: а, Д, 0. Из условий, что уровень наложения спектров не хуже -13дБ. А также через эффективную длительность импульса, которая определяет энергетические характеристики сигнала. Далее сигнал был продискретизирован и найден его спектр.
Далее через нормируемую частоту фильтра было найдено число отсчётов фильтра.
Подобные документы
Расчет КИХ-фильтра четвертого порядка методом наименьших квадратов. Структурная схема фильтра с конечной импульсной характеристикой с одной или несколькими гармониками. Исследование КИХ-фильтра с одиночным или последовательностью прямоугольных импульсов.
лабораторная работа [760,0 K], добавлен 23.11.2014Алгоритм, реализующий заданный тип фильтра в частотной области. Спектр входного, выходного сигнала. Спектральная (амплитудно-частотная) характеристика окна. Отклик фильтра на заданный сигнал. Двусторонний экспоненциальный радиоимпульс с несущей частотой.
курсовая работа [318,2 K], добавлен 07.07.2009Расчет цифрового и аналогового фильтра-прототипа. Структурные схемы и реализационные характеристики фильтра. Синтез цифрового фильтра в системе программирования MATLAB. Частотные и импульсные характеристики цифрового фильтра, карта его нулей и полюсов.
курсовая работа [564,8 K], добавлен 24.10.2012Цифровой согласованный фильтр с конечной импульсной характеристикой. Импульсная характеристика согласованного фильтра. Входной аналоговый и дискретизированный ЛЧМ сигналы. Нормированный отклик фильтра на заданный сигнал. Амплитудный спектр фильтра.
курсовая работа [929,5 K], добавлен 07.07.2009Разработка общего алгоритма функционирования цифрового фильтра нижних частот. Разработка и отладка программы на языке команд микропроцессора, составление и описание электрической принципиальной схемы устройства. Быстродействие и устойчивость фильтра.
курсовая работа [860,6 K], добавлен 28.11.2010Цифровые фильтры с конечной импульсной характеристикой (КИХ-фильтры) и с бесконечной импульсной характеристикой (БИХ-фильтры). Основные характеристики процессора DSP5631. Расчет фильтра методом частотной выборки. Моделирование КИХ-фильтров в MathCAD.
курсовая работа [968,9 K], добавлен 17.11.2012Аналитическое выражение передаточной функции аналогового фильтра. Построение структурной схемы реализации цифрового фильтра прямым и каноническим способами. Определение реализационных характеристик фильтра. Проверка коэффициентов передаточной функции.
курсовая работа [604,4 K], добавлен 24.10.2012Обратное z-преобразование, метод степенных рядов. Оценка частотной характеристики, разностное уравнение. Ошибки квантования коэффициентов. Нахождение импульсной характеристики методом разложения в степенной ряд. Нахождение масштабных множителей фильтра.
контрольная работа [1,2 M], добавлен 07.06.2013Испытание синтезированного нерекурсивного и рекурсивного цифрового фильтра стандартными и гармоническими сигналами. Расчет реакции фильтра на четырехточечный входной сигнал. Получение системной функции и частотных характеристик цифрового фильтра.
курсовая работа [3,0 M], добавлен 19.05.2015Ознакомление с достоинствами фильтров с бесконечной импульсной характеристикой. Рассмотрение способов инвариантного преобразования импульсной характеристики. Синтез рекурсивного дискретного фильтра по частотной характеристике аналогового прототипа.
презентация [73,2 K], добавлен 19.08.2013