реферат Устойчивость радиоэлектронных следящих систем
Алгебраические и частотные критерии устойчивости. Порядок характеристического комплекса. Годографы частотной передаточной функции разомкнутой системы. Определение устойчивости с помощью ЛАЧХ разомкнутой системы. Абсолютно и условно устойчивые системы.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 21.01.2009 |
Размер файла | 157,7 K |
Подобные документы
Нахождение аналитического вида функций Mc(w), Mg(w,m) и передаточной функции для разомкнутой системы. Линеаризация и численное решение разомкнутой системы. Оценка управляемости и устойчивости системы. Амплитудная, фазовая, мнимая частотные характеристики.
контрольная работа [392,3 K], добавлен 21.12.2010Рассмотрение основ передаточной функции замкнутой системы. Анализ устойчивости системы автоматического управления. Описание нахождения характеристического уравнения системы в замкнутом состоянии. Алгебраические критерии устойчивости Гурвица и Михайлова.
контрольная работа [98,9 K], добавлен 28.04.2014Определение передаточной функции разомкнутой системы и представление её в канонической форме. Построение её логарифмической частотной характеристики. Оценка показателей качества замкнутой системы, определение нулей и полюсов передаточной функции.
курсовая работа [1,2 M], добавлен 07.08.2013Частотные показатели качества системы автоматического управления в переходном режиме. Полный анализ устойчивости и качества управления для разомкнутой и замкнутой систем с помощью критериев Гурвица и Найквиста, программных продуктов Matlab, MatCad.
курсовая работа [702,6 K], добавлен 18.06.2011Возможности математического пакета MathCad. Использование алгебраического критерия Рауса-Гурвица для анализа устойчивости систем. Построение годографов Найквиста по передаточной функции разомкнутой системы заданной в виде полинома, использование ЛАХЧ.
практическая работа [320,6 K], добавлен 05.12.2009Преобразование исходной структурной схемы линейной системы автоматического регулирования. Определение с использованием критерия Найквиста устойчивости замкнутой системы. Построение амплитудно-фазовой частотной характеристики разомкнутой системы.
контрольная работа [795,6 K], добавлен 27.03.2016Получение дискретной передаточной функции. Составление пооператорной структурной схемы разомкнутой импульсной САУ. Передаточная функция билинейно преобразованной системы. Определение граничного коэффициента. Проверка устойчивости системы, расчет ошибки.
курсовая работа [1,3 M], добавлен 09.06.2015Проведение анализа замкнутой системы на устойчивость. Определение передаточной функции разомкнутой системы и амплитудно-фазовой частотной характеристики системы автоматического управления. Применение для анализа критериев Гурвица, Михайлова и Найквиста.
контрольная работа [367,4 K], добавлен 17.07.2013Построение логарифмических частотных характеристик разомкнутой системы по заданным показателям качества. Определение по построенным ЛАХ и ЛФХ запасов устойчивости по усилению и по фазе. Передаточная функция разомкнутой системы по построенной ЛАХ.
контрольная работа [1,5 M], добавлен 20.03.2011Исследование устойчивости непрерывной системы. Передаточная функция замкнутого контура. Определение критического коэффициента усиления разомкнутой системы. Синтез последовательного корректирующего устройства. Моделирование скорректированной системы.
курсовая работа [315,4 K], добавлен 08.04.2014