Составление выражения для передаточной функции замкнутой системы

Рассмотрение основ передаточной функции замкнутой системы. Анализ устойчивости системы автоматического управления. Описание нахождения характеристического уравнения системы в замкнутом состоянии. Алгебраические критерии устойчивости Гурвица и Михайлова.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 28.04.2014
Размер файла 98,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Составить выражение для передаточной функции замкнутой системы, исследовать её на устойчивость, используя критерии Гурвица и Михайлова.

Звенья 1, 2 соединены параллельно:

Звенья 3, 4 и 5 соединены последовательно:

Звенья 12, 345 соединены последовательно:

Звенья 6 и 7 соединены параллельно:

С учетом обратной связи:

Таким образом, результирующая передаточная функция замкнутой системы:

Критерий Гурвица:

Для оценки устойчивости применим наиболее распространенный из алгебраических критериев - метод Гурвица. Для этого необходимо найти характеристическое уравнение системы в замкнутом состоянии. Полином знаменателя в выражении, приравненный к нулю. Это и есть характеристическое уравнение системы:

А(p) = a3 · p3 + a2 · p2 + a1 · p + a0 = 0

Согласно критерию Гурвица, для того, чтобы система была устойчивой, необходимо, чтобы при а0 > 0 были положительны все определители Гурвица:

?1 > 0, ?2 > 0, …, ?n > 0,

где n - степень характеристического уравнения системы. В данном случае n = 3, следовательно, должны быть положительны все определители Гурвица до третьего порядка.

Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму:

1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от an до a1;

2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали снизу вверх;

3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули

Тогда согласно критерию Гурвица:

Так как все определители Гурвица больше 0, система устойчива.

Если характеристическое уравнение заданной САУ записать в виде:

A(щ) = a0 · (jщ)n + a1· (jщ)n-1 +…+ an-1· jщ + an= 0,

то его можно заменить эквивалентной суммой вещественной и мнимой частей, обозначив действительную часть через U (щ), а мнимую - через V (щ):

U(щ) +jV(щ) =А(jщ),

где U(щ) = Rе А(jщ) = an - an-2 · (щ)2 + ….+an-4· (щ) 4+ a0 · (щ)n ,

V(щ) = Im А(jщ) = an-1 - an-3 · щ + ….+an-5 · щ3+ a1 · щn-1

Для характеристического уравнения исходной САУ аналитические выражения вещественной и мнимой частей имеют вид:

передаточный функция замкнутый гурвиц

UА(щ) = 2.729 - 0.5374 · щ2

VА(щ) = 22.2675 · щ - 0.0163 · щ3.

Изменяя щ в пределах от 0 до ?, получим кривую - годограф Михайлова. Критерий Михайлова формулируется следующим образом: Для устойчивости системы необходимо и достаточно, чтобы годограф Михайлова при изменении щ от 0 до начинался на вещественной оси в точке a3 и проходил последовательно против часовой стрелки n квадрантов, не обращаясь в ноль и стремясь к в n-ом квадранте.

Следуя выше приведенному алгоритму, получим годограф Михайлова, представленный на рисунке. Находим значения вещественной и мнимой части.

w

U

V

0,00

2,729

0

2,50

-0,62975

55,41406

5,00

-10,706

109,3

7,50

-27,4998

160,1297

10,00

-51,011

206,375

12,50

-81,2398

246,5078

15,00

-118,186

279

17,50

-161,85

302,3234

20,00

-212,231

314,95

22,50

-269,33

315,3516

25,00

-333,146

302

27,50

-403,68

273,3672

30,00

-480,931

227,925

32,50

-564,9

164,1453

35,00

-655,586

80,5

37,50

-752,99

-24,5391

40,00

-857,111

-152,5

42,50

-967,95

-304,911

45,00

-1085,51

-483,3

Строим по точкам годограф:

Для уточнения пересечения с осями найдем решения:

VА(щ) = 22.2675 · щ - 0.0163 · щ3 = 0

щ(22.2675 - 0.0163 · щ2) = 0

щ = 0 щ = 36.9608

U(0) = 2.729 U(36.9608) = -68.4701

UА(щ) = 2.729 - 0.5374 · щ2

щ = 2.2535

V(2.2535) = 49.9933

w

U

V

0

2,729

0

2,2535

0

49,9933

36,9608

-731,414

0

Из таблицы видно, что пересечение с осями происходит в правильном порядке.

Или в MathCAD

Годограф Михайлова начался на действительной оси и прошел 3 квадранта против часовой стрелки. Согласно критерию система устойчива.

Размещено на Allbest.ru


Подобные документы

  • Расчет передаточной функции разомкнутой и замкнутой цепи. Построение переходного процесса системы при подаче на вход сигнала в виде единичной ступеньки. Исследование устойчивости системы по критерию Гурвица и Михайлова. Выводы о работоспособности системы.

    контрольная работа [194,0 K], добавлен 19.05.2012

  • Расчёт корректирующего звена следящей системы авиационного привода. Определение характеристического уравнения замкнутой САУ. Построение ЛАЧХ неизменяемой части. Проверка по критерию Гурвица на устойчивость заданной системы в замкнутом состоянии.

    курсовая работа [3,1 M], добавлен 20.06.2011

  • Проведение анализа замкнутой системы на устойчивость. Определение передаточной функции разомкнутой системы и амплитудно-фазовой частотной характеристики системы автоматического управления. Применение для анализа критериев Гурвица, Михайлова и Найквиста.

    контрольная работа [367,4 K], добавлен 17.07.2013

  • Анализ устойчивости системы автоматического управления с применением алгебраического и частного критериев устойчивости. Составление передаточной функции разомкнутой и замкнутой САУ. Оценка ее точности в вынужденном режиме, качество переходного процесса.

    курсовая работа [5,7 M], добавлен 02.06.2013

  • Передаточные функции замкнутой и разомкнутой САУ. Построение АХЧ, ФЧХ, АФЧХ, ЛАЧХ, ЛФЧХ системы в замкнутом состоянии. Расчет запасов устойчивости замкнутой системы по годографу Найквиста. Исследование качества переходных процессов и моделирование САУ.

    курсовая работа [1,2 M], добавлен 21.10.2013

  • Оценка устойчивости системы автоматического регулирования по критериям устойчивости Найквиста, Михайлова, Гурвица (Рауса-Гурвица). Составление матрицы главного определителя для определения устойчивости системы. Листинг программы и анализ результатов.

    лабораторная работа [844,0 K], добавлен 06.06.2016

  • Алгебраические и частотные критерии устойчивости. Порядок характеристического комплекса. Годографы частотной передаточной функции разомкнутой системы. Определение устойчивости с помощью ЛАЧХ разомкнутой системы. Абсолютно и условно устойчивые системы.

    реферат [157,7 K], добавлен 21.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.