Строительство автомобильных дорог

Производство и организация работ при реконструкции автомобильной дороги: дорожная одежда, технологические карты, сметный расчет реконструкции. Обновление асфальтобетонных покрытий. Подбор смесей, технологические процессы холодной регенерации покрытий.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 16.03.2008
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для приготовления смесей и укрепленных грунтов применяют грунты и следующие материалы:

- щебень;

- гравий;

- песок;

- щебеночно-гравийно-песчаные смеси;

- шлаковые щебеночно-песчаные смеси;

- гравийно-песчаные смеси;

- минеральные порошки.

Щебень и гравий из плотных горных пород, щебень из шлаков, шлаковые смеси марок , входящие в состав минеральной части смесей, должны соответствовать требованиям ГОСТ 8267 и ГОСТ 3344 соответственно. Содержание зерен пластинчатой (лещадной) формы в щебне не должно быть более 35% по массе.

Гравийно-песчаные смеси по зерновому составу должны соответствовать требованиям ГОСТ 23735, а гравий и песок, входящие в состав таких смесей, - требованиям ГОСТ 8267 и ГОСТ 8736 соответственно.

Для приготовления смесей применяют щебень и гравий фракций, мм: от 5 до 10, св. 10 до 20, св. 20 до 40, а также смеси фракций - от 5 до 20 и от 5 до 40.

Прочность щебня и гравия должна соответствовать значениям, приведенным в таблице 6.4.

Для приготовления смесей применяют минеральные порошки, соответствующие требованиям ГОСТ 16557, а также порошковые отходы промышленного производства, измельченные основные металлургические шлаки, соответствующие требованиям, приведенным в ГОСТ 9128. Допускается применение фосфорных шлаков с содержанием не более 2% по массе и соответствующих требованиям, приведенным в ГОСТ 9128, по остальным показателям качества. Для смесей, приготавливаемых на дороге, допускается в качестве минерального порошка применять пылеватые грунты с числом пластичности не более 10.

В случае применения материалов и грунтов с показателями качества ниже требований, должно быть проведено их исследование в специализированных лабораториях научно-исследовательских институтов для подтверждения возможности и технико-экономической целесообразности получения смесей и укрепленных грунтов с нормируемыми показателями качества.

В качестве органических вяжущих для приготовления смесей и укрепленных грунтов применяют битумы нефтяные дорожные жидкие по ГОСТ 11955, эмульсии битумные дорожные по ГОСТ 18659.

Допускается применение других органических вяжущих, удовлетворяющих требованиям действующих нормативных документов и обеспечивающих получение смесей и укрепленных грунтов в соответствии с требованиями настоящего стандарта.

Для приготовления смесей применяют также битумы нефтяные дорожные вязкие по ГОСТ 22245.

Для устройства оснований не допускается использование жидких битумов без активных добавок.

В качестве минеральных вяжущих для приготовления смесей и укрепленных грунтов применяют портландцемент и шлакопортландцемент по ГОСТ 10178, золу-унос по ГОСТ 25818.

В качестве активных добавок к применяемым материалам и грунтам используют известь по ГОСТ 9179, а также указанные минеральные вяжущие в количестве не более 4% по массе.

В качестве активных добавок к битуму применяют поверхностно-активные вещества (ПАВ) или продукты, содержащие ПАВ и удовлетворяющие требованиям действующих нормативных документов.

Вода для приготовления смесей и укрепленных грунтов должна соответствовать ГОСТ 23732.

6.2.3 Асфальтогранулобетоны.

В зависимости от вида нового вяжущего, вводимого в АГ при приготовлении АГБ-смесей, их подразделяют на следующие типы:

А - без добавления вяжущего;

Э - с добавлением битумной эмульсии;

В - с добавлением вспененного битума;

Б - с добавлением разогретого битума;

М - с добавлением минерального вяжущего (чаще всего цемента или извести);

К - с добавлением комплексного вяжущего (чаще всего битумной эмульсии и цемента).

АГБ перечисленных типов отличаются своими расчетными характеристиками и скоростью формирования равновесной структуры (структурообразования).

В зависимости от массовой доли щебня или гравия (зерна каменного материала крупнее 5 мм), входящего в состав асфальтобетона, из которого получен АГ, АГБ-смеси подразделяют на щебеночные с содержанием щебня 35% и более, и песчаные - менее 35%.

Показатели физико-механических свойств АГБ, в зависимости от категории автомобильной дороги и типа смеси, должны соответствовать указанным в таблице 6.7.

Таблица 6.7 Физико-механические свойства АГБ в зависимости от категории автомобильной дороги.

Наименование показателя

Нормы для категории автомобильной дороги

I-II

III

IV

Для смесей типа

Э

М,

К

В

Э

М,

К

В

Б

Э

М,

К

В

Б

А

1. Предел прочности при сжатии, не менее, МПа, при температуре 200С в возрасте:

а) 1 суток

б) 7 суток

-

1,4

-

2,0

1,4

-

-

1,4

-

2,0

1,4

-

1,2

-

-

1,4

-

2,0

1,4

-

1,2

-

0,7

-

2. То же, при 500С в возрасте:

а) 1 суток

б) 7 суток

-

0,7

-

0,8

0,7

-

-

0,6

-

0,7

0,6

-

0,5

-

-

0,5

-

0,7

0,6

-

0,5

-

0,4

-

3. Коэффициент водостойкости, не менее

0,7

0,7

0,6

0,6

0,6

0,6

0,6

4. Водонасыщение по объему, %, не более

10

10

12

12

14

14

16

Гранулометрический состав АГБ-смеси должен соответствовать требованиям, установленным в ГОСТ 9128 для пористых и высокопористых щебеночных смесей, за исключением частиц мельче 0,071 мм, содержание которых не нормируется.

Для дорог I-II категорий применяют щебеночные смеси, а для дорог III-IV категорий допускается применение песчаных АГБ-смесей. Если в АГ, используемом для приготовления щебеночных смесей, содержание щебня меньше 35%, при приготовлении АГБ-смеси необходимо добавление недостающей фракции щебня.

Содержание в АГ гранул крупнее 50 мм не должно превышать 5% по массе.

Для приготовления смесей с использованием органического вяжущего применяют вязкие и жидкие нефтяные битумы, отвечающие требованиям соответственно ГОСТ 22245 и ГОСТ 11955.

Марку битума выбирают в зависимости от типа смеси и дорожно-климатической зоны в соответствии с таблицей 6.8.

Таблица 6.8 Марки битума для приготовления АГБ-смесей.

Тип смеси

Марка битума для дорожно-климатической зоны

I

II, III

IV, V

Б

БНД 200/300

СГ, МГ,

МГО 130/200

БНД 200/300

СГ, МГ,

МГО 130/200

БНД 130/200

СГ, МГ,

МГО 70/130 и 130/200

В

БНД 130/200

БНД 90/130

БНД 130/200

БНД 60/90

БНД 90/130

Э, К

БНД 90/130

БНД 130/200

БНД 60/90

БНД 90/130

БНД 60/90

БНД 90/130

Для приготовления смесей типов Э и К используют эмульсии, отвечающие требованиям ГОСТ 18659.

В смесях типа Э применяют катионные эмульсии классов ЭБК-2, ЭБК-3 и анионные эмульсии классов ЭБА-2, ЭБА-3. Более предпочтительными являются катионные эмульсии.

В смесях типа К применяют преимущественно катионные эмульсии класса ЭБК-3.

Для приготовления смесей типов М и К в качестве минерального вяжущего чаще всего применяют портландцемент не ниже марки 400, соответствующий требованиям ГОСТ 10178.

При необходимости увеличения содержания в АГБ-смеси щебня к АГ добавляют щебень, отвечающий требованиям ГОСТ 8267.

Для приготовления смесей всех типов, кроме типа Б, в ряде случаев требуется добавление воды. Обычно применят воду, пригодную для питья.

6.3 Конструирование и расчет дорожной одежды.

Большинство существующих дорог, требующих усиления, имеют искаженный поперечный профиль и неудовлетворительную продольную ровность, что отражается на комфорте и безопасности движения и усложняет содержание покрытия, особенно в зимнее время. Поэтому в проекте должны быть предусмотрены мероприятия по выравниванию покрытия.

На стадии сбора исходных данных осуществляют работы, включающие: оценку прочности дорожной одежды в соответствии с нормами ОДН 218.046.01 или Указаниями ВСН-52-89; отбор кернов для определения продольного и поперечного профилей толщин пакета монолитных слоев дорожной одежды и вида асфальтобетона, входящего в эти слои; бурение скважин для определения толщин остальных конструктивных слоев дорожной одежды и оценки состояния составляющих их материалов, в том числе грунта земляного полотна и основания; создание цифровой модели местности.

На дорогах с приведенной расчетной интенсивностью воздействия нагрузки Nр2000 ед./сут. регенерированный слой рассматривают в качестве верхнего монолитного слоя основания, на который должно быть уложено двухслойное асфальтобетонное покрытие общей толщиной 9-10 см.

На дорогах с 500Nр2000 ед./сут. на регенерированный слой может быть уложено однослойное покрытие из плотного асфальтобетона толщиной 4-5 см.

На дорогах с Nр500 ед./сут. регенерированный слой рассматривают в качестве слоя покрытия, на котором должна быть устроена поверхностная обработка.

Задавшись типом и толщиной покрытия, укладываемого поверх регенерированного слоя, рассчитывают его толщину по допускаемому упругому прогибу в соответствии с ОДН 218.046-01 с учетом требуемого модуля упругости Етр, рассчитанного общего модуля упругости на поверхности слоя, подстилающего регенерированный, и ориентировочного значения кратковременного модуля упругости регенерирующего слоя при соответствующей расчетной температуре.

Регенерированный слой проверяют на сопротивление растяжению при изгибе при температуре покрытия 00С.

Ориентировочные расчетные значения кратковременного модуля упругости (Ер) и среднего сопротивления растяжению при изгибе (Rи), при времени воздействия нагрузки 0,1 с, для разных типов АГБ-смесей приведены в таблицах 6.6 и 6.7 (в дальнейшем подлежат уточнению).

Таблица 6.9 Расчетные значения кратковременного модуля упругости.

Тип смеси

Расчетные значения кратковременного модуля упругости Ер, МПа, при температуре покрытия, 0С

+10

+20

+30

+40

+50

А

1200

700

400

250

210

Б

1600

900

570

420

380

Э, В

1800

1100

700

520

470

К

2300

1400

920

700

630

М

2800

1800

1200

920

840

Таблица 6.10 Характеристики для расчета на изгиб при температуре покрытия 00С.

Тип смеси

Характеристики для расчета на изгиб при температуре покрытия 00С

Кратковременный модуль упругости Ер, МПа

Среднее сопротивление растяжению при изгибе Rи, МПа

А

1600

0,5

Б

2100

0,9

Э, В

2500

1,1

К

3200

1,3

М

3600

1,7

При расчете по условию сдвига конструктивных слоев дорожной одежды мы рассматриваем его по условию:

С12.tg?0,75Рр,

где

С1 - коэффициент сцепления а/б на транзитном участке (при движении);

С2 - коэффициент сцепления а/б при воздействии статической и горизонтальной нагрузки (при остановке);

Р - нагрузка на покрытие;

? - величина угла внутреннего трения материала проверяемого слоя при действии нагрузки от торможения;

Рр -

Исходя из условия, находим угол внутреннего трения материала:

Р.tg?0,75Рр1.С2

tg?(0,75-(С1.С2р.Р)).2

при экстренном торможении:

tg?(0,75-(С1.С2р.Р)).4

В зависимости от толщины пакета асфальтобетонных слоев ремонтируемой дорожной одежды (hс) могут возникнуть следующие случаи:

а) hс существенно больше, чем толщина регенерированного слоя, полученная по расчету (hс).

В этом случае старое покрытие целесообразнее всего отфрезеровать с учетом выравнивания его в продольном и поперечном направлениях (выравнивающее фрезерование).

Глубину фрезерования (hв) по оси проезжей части определяют таким образом, чтобы оставшийся пакет асфальтобетонных слоев был в среднем близок по толщине к hp, т.е. hв?hc-hp.

После выравнивающего фрезерования осуществляют регенерационное фрезерование на глубину близкую к hр.

При построении соответствующей картограммы возможны местами захват части слоя основания или оставление части старого асфальтобетонного слоя с учетом получения регенерируемого слоя требуемой толщины. Пример такой конструкции приведен на рисунке 6.1, а.

Добытый в процессе выравнивающего фрезерования АГ должен быть повторно использован (например, для устройства выравнивающего слоя), что удешевляет производство ремонтных работ.

Если увеличение затрат за счет более глубокого фрезерования, чем это требуется для выравнивания, не компенсируется доходом от повторного использования АГ, можно назначить hв=0 (рисунок 6.1, б). В этом случае местами требуется устройство выравнивающего слоя.

Рисунок 6.1 Примеры конструирования дорожной одежды, включающей регенерированный слой (покрытие, укладываемое поверх регенерированного слоя, не показано):

а) - hс существенно больше hp, hв?hc-hр; б) - то же, при hв?0; в) - hс сопоставима с hр или меньше ее;

1 - пакет асфальтобетонных слоев старой дорожной одежды; 2 - регенерированный слой; 3 - удаляемая часть старого покрытия после выравнивающего фрезерования; 4 - выравнивающий слой, укладываемый поверх старого покрытия и повторно перерабатываемый совместно с материалом старого покрытия в процессе регенерации; 5- регенерированный слой из АГ с захватом части слоя основания; 6 - слой основания; 7 - обочина.

Оставшийся после регенерации слой нетронутого старого асфальтобетона включают в расчет дорожной одежды, принимая его расчетный модуль упругости Ер=500 МПа.

Недостатком такого конструктивного решения является то, что в случае превышения средней толщины оставшегося слоя (hо) общей толщины пакета новых слоев (включая регенерированный) возникает опасность появления отраженных трещин.

б) hс сопоставима или меньше hр.

В этом случае предусматривают комплексное выравнивание, сочетающее выравнивающее фрезерование с устройством выравнивающего слоя (рис. 6.1, в), после чего осуществляют регенерацию выровненного покрытия с захватом на всю ширину или часть ширины слоя основания.

Уменьшение толщины слоя основания учитывают при расчете дорожной одежды.

6.4 Подбор состава асфальтогранулобетона.

6.4.1 Отбор пробы.

На основе запроектированной конструкции дорожной одежды и осмотра кернов, отобранных на стадии сбора исходных данных, намечают участки, на которых зерновой состав пакета асфальтобетонных слоев, подлежащих регенерации, находится в пределах одного типа смеси по ГОСТ 9128 (А, Б, В или Д).

Из намеченных участков отбирают пробы АГ путем фрезерования покрытия.

Если выбранная конструкция дорожной одежды предусматривают удаление верхней части асфальтобетонных слоев (см. рис. 6.1, а), которая отличается по типу смеси от нижележащей, пробу отбирают АГ из слоя, подлежащего регенерации.

Масса пробы с одного участка должна быть не менее 30 кг.

6.4.2 Выбор типа АГБ.

В зависимости от имеющегося оборудования и заложенного в проект расчетного модуля упругости намечают для исследования один или несколько типов АГБ-смеси.

Битум, входящий в состав добавок для смесей типов Э, В, Б и К, устраняет излишнюю жесткость состарившегося пленочного битума, окружающего гранулы; экранирует обнажившиеся в результате фрезерования поверхности зеоен минерального материала; обеспечивает сцепление зерен заполнителя, добавляемого для увеличения содержания щебня или корректировки гранулометрического состава АГБ-смеси, между собой и с АГ; заполняет частично межгранулярные пустоты, уменьшая водонасыщение АГБ; снижает межгранулярное трение, способствуя лучшей упаковке гранул при уплотнении АГБ-смеси; способствует залечиванию микродефектов, возникающих в процессе эксплуатации регенерированного слоя.

Цемент, входящий в состав смесей типов М и К, образует в присутствии воды цементный камень, который частично заполняет межгранулярные пустоты; армирует битумную пленку, окружающую гранулу; кристаллически связывается с не обработанными битумом зернами, содержащимися в АГ и заполнителе.

Наиболее технологичны смеси типа Э. Их чаще всего применяют для регенерации слоев, преимущественно состоящих из АГ. К недостаткам следует отнести возможность колееобразования при тяжелом движении.

Смеси типа К более сложны в изготовлении, но АГБ из таких смесей более устойчив к колееобразованию. Применение указанных смесей позволяет снизить толщину регенерированного слоя.

Слой из смесей типа К быстрее формируется, что особенно важно при неблагоприятных погодных условиях.

Смеси типа М чаще всего применяют, когда при регенерации захватывается часть слоя основания из не обработанного битумом материала (более 30% от толщины регенерируемого слоя).

АГБ из такой смеси отличается высокими расчетными характеристиками, однако в регенерированном слое возможно появление усадочных и температурных трещин.

6.4.3 Приготовление смесей.

Из пробы АГ отсеивают крупные гранулы через сито с отверстиями диаметром 40 мм.

Смеси заданного состава готовят при температуре 20±20С в лабораторной лопастной мешалке или вручную. Перемешивание заканчивают, смесь станет однородной.

Если проектом предусмотрено добавление к АГ щебня или других минеральных заполнителей или при регенерации возможен захват части основания (более 20% по массе), соответствующий материал, просеянный через сито, перемешивают с АГ в требуемой пропорции.

При приготовлении АГБ-смеси АГ должен иметь 2%-ную влажность. Это имитирует его естественное состояние, при котором влажность обычно колеблется в пределах 1-3%. Если проба АГ имеет меньшую влажность, то в него добавляют недостающее количество воды, а если большую влажность, то его подсушивают на воздухе или в сушильном шкафу с принудительной вентиляцией при температуре не выше 400С до требуемой влажности. Перед приготовлением АГБ-смеси в этом случае необходимо остудить навеску АГ до температуры 20±20С.

Для упрощения дозирования воды пробу АГ можно заранее высушить до постоянного веса.

При приготовлении АГБ-смеси типа М в АГ с влажностью 2% вводят сначала цемент, а после его равномерного распределения в смеси - дополнительное количество воды.

При приготовлении АГБ-смеси типа К в АГ с влажностью 2% вводят сеачала эмульсию, а после ее равномерного распределения в смеси - цемент.

Если по принятой технологии предполагается введение цемента в виде суспензии, то в лабораторных условиях в АГ вводят цементную суспензию с соотношением В/Ц=0,5 и эмульсию одновременно.

Предварительно определяют совместимость этих двух типов вяжущего путем добавления 150 г суспензии (100 г цемента + 50 г воды) в 100 г эмульсии и непрерывного их перемешивания в стеклянном стакане стеклянной палочкой.

Процесс распада эмульсии должен начаться не ранее, чем через 4 мин. От начала перемешивания.

6.4.4 Изготовление образцов и подготовка их к испытанию.

Физико-механические свойства АГБ определяют на цилиндрических образцах диаметром 71,4 мм (площадью 40 см2), изготовленных прессованием под давлением 7 МПа, в стандартных формах для изготовления асфальтобетонных образцов (ГОСТ 12801), при температуре 20±20С. Время выдерживания образца при заданном давлении - 3 мин.

Высота образца должна составлять 71,4±1,5 мм. Ориентировочное количество смеси на образец 610-620 г. Его уточняют при изготовлении пробного образца как для асфальтобетона (ГОСТ 12801).

В процессе прессования излишек воды должен выделятся через зазор между нижним пуансоном и формой. Если зазор недостаточен, на пуансоне необходимо проделать с четырех сторон вертикальные прорези шириной и глубиной 2 мм.

После изготовления образцы хранят в помещении при температуре 20±20С и влажности воздуха 60-80% до испытания.

Перед испытанием образцы высушивают до постоянного веса на воздухе или в сушильном шкафу с принудительной вентиляцией при температуре не выше 400С. В последнем случае перед проведением испытанием их следует охладить до комнатной температуры.

6.4.5 Подбор состава АГБ.

Для смесей типов В и Б готовят четыре замеса из АГ с влажностью 2%: с добавлением 1,0, 1,5 и 2,0% битума (сверх 100% АГ по массе) и сравнительный - без добавления битума. На один замес требуется 2 кг АГ.

Из смесей, приготовленных как указано в п.6.4.3, прессуют по три образца (см. п.6.4.4), и через сутки хранения, после подготовки к испытаниям, определяют среднюю плотность образцов.

С целью упрощения испытания, объем образца (V) вычисляют с погрешностью 1 см3 по формуле

, (6.1)

где

- среднее значение высоты образца из четырех замеров штангенциркулем в точках, равностоящих друг от друга по окружности образца, с погрешностью 0,01 см;

S - площадь образца, равная 40 см2;

6 см3 - ориентировочная разница между объемами, определенными геометрическим и гидростатическим методами.

Среднюю плотность образца ?а или ?аг определяют с погрешностью 0,01 г/см3 по формуле

?=g0/V (6.2)

где

g0 - масса образца, взвешенного с погрешностью 1 г на воздухе.

За среднюю плотность для каждой серии образцов принимают среднее арифметическое результатов определений плотности трех образцов. Расхождение между результатами параллельных определений не должно превышать 0,03 г/см3.

Вычисляют коэффициенты упаковки гранул (Кг) для каждой серии образцов из АГБ с разным содержанием битума.

После определения средней плотности образцы испытывают на сжатие при 200С.

Оптимальным является содержание битума, при котором образцы показывают максимальное значение показателя предела прочности АГБ при сжатии при 200С (R20). Как правило, у образцов из такой серии максимальным оказывается и значение показателя Кг.

Если средний показатель R20 для двух смежных серий отличается меньше чем на 0,1 МПа, предпочтение следует отдать АГБ с более высоким значением показателя Кг.

В зависимости от тенденции изменения показателей Кг и R20 с изменением содержания битума может потребоваться изготовление дополнительных замесов с другим содержанием битума: менее 1,0% или более 2,0%.

Если показатель R20 для серии с оптимальным содержанием битума не отвечает требованиям табл.6.7 следует попытаться откорректировать гранулометрический состав АГБ-смеси или перейти на смеси типов К или М.

Для смесей типа Э процедура подбора оптимального состава АГБ аналогична описанной выше.

Основные замесы готовят с добавлением 2,0, 3,0 и 4,0% эмульсии.

В смесях этого типа содержания воды, как правило, оказывается избыточным и лишняя вода отжимается при прессовании образцов.

Определение средней плотности образцов упрощенным способом и испытание на сжатие при 200С осуществляют через 7 сут. после их изготовления, так как АГБ на эмульсии требует времени для формирования битумной пленки.

Для смесей типа М основные замесы готовят с добавлением 2,0, 3,0 и 4,0% цемента и добавлением в последние две смеси 1,0 и 2,0% воды (сверх 100% АГ по массе) соответственно (помимо 2% воды, содержащейся в АГ).

Если какая-либо из этих смесей плохо перемешивается, следует увеличить содержание воды на 0,5%.

В остальном процедура подбора оптимального состава АГБ аналогична описанной выше.

Оптимальным является содержание цемента, при котором у образцов достигается максимальное значение показателя Кг. Значение же показателя R20 должно соответствовать требованиям табл.6.7. В противном случае следует попытаться откорректировать гранулометрический состав АГБ-смеси или увеличить содержание цемента, но не более, чем до 5%.

Для смесей типа К назначают содержание: цемента 3%, а эмульсии - 2,0, 3,0 и 4,0% (сверх 100% АГ по массе). Если обеспечена 2%-ная влажность АГ, воду в смеси не добавляют.

В остальном процедура подбора оптимального состава АГБ аналогична предыдущим процедурам.

Оптимальным является содержание эмульсии, при котором у образцов наблюдается максимальное значение показателя Кг.

С увеличением в смеси содержания цемента растет и кратковременный модуль упругости (Ер). Например, при одном и том же содержании эмульсии 3% и содержаниях цемента 2,0, 3,0 и 4,0% соответствующие значения Ер регенерированного слоя в 28-дневном возрасте при 100С могут достигать 1700, 2950 и 4250 МПа.

Эмульсия снижает кратковременный модуль упругости регенерированного слоя из смесей типа К примерно на 20%, по сравнению со смесями типа М.

Оптимальное соотношение между содержанием цемента и эмульсии в смеси - 50:50, но допускаются вариации от 60:40 до 40:60.

Если показатель R20 находится на пределе или ниже требований табл.6.7, а корректировка гранулометрического состава АГБ-смеси нежелательна из экономических соображений, можно увеличить содержание цемента (но не более 5%) и повторить процедуру подбора оптимального содержания эмульсии.

Подобрав состав, изготавливают соответствующую смесь для проверки остальных физико-механических свойств АГБ. На замес требуется 4 кг АГ.

Прессуют шесть образцов и через сутки или 7 суток ( в зависимости от типа АГБ-смеси) определяют их среднюю плотность. После этого делят образцы на две группы по три образца так, чтобы средние арифметические результатов определения плотности в каждой из групп были максимально близки.

Для трех образцов одной из групп определяют водонасыщение, а также показатели предела прочности АГБ в водонасыщенном состоянии (Rв) и коэффициента водостойкости АГБ (Кв). Это делается сразу после определения средней плотности. При вычислении водонасыщения используют значения массы образцов, взвешенных на воздухе, полученные при определении их средней плотности.

Перед определением показателя предела прочности АГБ при сжатии при 500С (R50) образцы из второй серии высушивают (после определения средней плотности) до постоянного веса.

Если показатель водонасыщения АГБ (W) или Кв не отвечают требованиям табл. 6.7, следует или откорректировать гранулометрический состав АГБ-смеси, или увеличить содержание вяжущего в смесях типа Б, В и Э, или перейти на смеси типов К или М, для которых, как правило, не возникает проблем с этими показателями.

Если показатель R50 не отвечает требованиям табл.6.7, что иногда имеет место для смесей типов Б, В и Э, следует перейти на смеси типов К или М, для которых всегда может быть обеспечено требуемое значение этого показателя путем увеличения содержания цемента.

6.5 Технологические схемы производства работ.

Выбор технологической схемы производства работ зависит от цели ремонта, категории автомобильной дороги, конструкции дорожной одежды, ее состояния.

Технологическую схему разрабатывает подрядчик на основе проекта, имеющегося у него в наличии оборудования и выбранного типа АГБ-смеси.

На рисунке 6.2 приведены схемы работ, в которых операция фрезерования отделена от остальных операций.

Рисунок 6.2 Технологические схемы холодной регенерации с использованием в качестве ведущей машины смесителя-укладчика:

1 - каток; 2 - смеситель-укладчик; 3 - фреза; 4 - подборщик; 5 - валик АГ; 6 - автомобиль-самосвал; 7 - склад АГ.

После выравнивания покрытия с помощью дорожной фрезерной машины (далее фрезы) осуществляют регенерационное фрезерование пакета асфальтобетонных слоев на проектную глубину. Образующийся АГ, по транспортеру, имеющемуся на фрезе, поступает в приемный бункер смесителя-укладчика. Оттуда он попадает в двухвальную мешалку горизонтального типа, где перемешивается с органическим вяжущим. Готовую смесь укладывают и уплотняют.

Согласно схеме (рис.6.2, а), фреза работает в сцепе со смесителем-укладчиком, который является ведущей машиной. Производительность смесителя-укладчика - 80-150 т/ч, что соответствует рабочей скорости 2-3 м/мин. Толщина укладываемого слоя - до 12 см. Так как рабочая скорость фрезы составляет 7-10 м/мин, очевидно, что ее производительность искусственно будет занижена минимум в три раза.

Смеситель-укладчик имеет два скользящих уширителя, что позволяет варьировать ширину укладки от 2,4 до 4,2 м. Отсюда следует, что минимальная ширина фрезерования должна составлять 2,4 м.

Недостатком этой схемы является то, что при неисправности или техническом обслуживании одной из машин останавливается весь поток.

По схеме (рис.6.2, б) фреза оставляет АГ на проезжей части в виде призмы. Ее подбирает прицепной или самоходный подборщик, работающий в сцепе со смесителем-укладчиком, и направляет в приемный бункер последнего. Здесь производительность фрезы не зависит от производительности ведущей машины.

Регенерационное фрезерование может быть совмещено с выравнивающим (рис.6.2, в). В этом случае фреза работает в одном звене с автомобилями-самосвалами, которые доставляют основной объем АГ к смесителю-укладчику, а избыток АГ - на другой объект или склад.

Возможен также вариант, при котором работу фрезы не увязывают с работой смесителя-укладчика. АГ складируют на притрассовых складах, откуда отгружают погрузчиком в автомобили-самосвалы и направляют к смесителю-укладчику.

Наиболее дешевым и технологичным является второй вариант.

Смеситель-укладчик приспособлен в первую очередь для работы со смесями типа Э. Он имеет емкость для хранения 10 т эмульсии и дозирующее устройство.

При необходимости увеличения содержания щебня в АГБ-смеси или корректировки ее гранулометрического состава новый материал распределяют ровным слоем требуемой толщины по покрытию перед регенерационным фрезерованием или после него.

На рис.6.3 приведена технологическая схема с использованием в качестве смесителя-укладчика ремиксера, освобожденного от газового оборудования для разогрева покрытия. Здесь операция регенерационного фрезерования также отделена от остальных операций.

После проходов фрезы автогрейдер профилирует призмы АГ ровным слоем по всей ширине регенерируемой полосы.

Смеситель-укладчик (далее - регенератор) позволяет готовить смеси типов Э, М и К. В комплекте с ним работает специальная машина, оборудованная силосными банками для хранения эмульсии, цемента и воды (рис.6.3, а). Материал для корректировки гранулометрического состава АГБ-смеси можно выгружать непосредственно в приемный бункер регенератора.

Для подачи АГ в смеситель не требуется подборщик. Эту операцию выполняют специальные шнеки.

Ширину укладки можно изменять в пределах от 3,5 до 4,5 м, что, как и в случае смесителя-укладчика, облегчает выполнение кратного числа проходов по ширине покрытия.

Толщина укладываемого слоя - до 30 см; рабочая скорость - до 16 м/мин; производительность - около 300 т/ч.

На регенераторе имеются емкости для хранения эмульсии, цемента и воды, которые пополняются из автомашины с силосными банками.

Рисунок 6.3. Технологические схемы ХР с использованием в качестве ведущей машины регенератора:

1 - каток; 2 - регенератор; 3 - машина с силосными банками для основных компонентов смеси;

4 - автогрейдер; 5 - фреза; 6 - эмульсиовоз; 7 - суспензатор

Дозировкой компонентов управляют микропроцессоры.

В последнее время все большее распространение получает технология, предусматривающая добавку цемента и воды в смесях типов М и К в виде цементного теста (суспензии). Для его приготовления на регенераторе имеется соответствующее устройство. Применяется и специальная машина - суспензатор. На рис.6.3, б показана схема ХР с приготовлением смеси типа К с добавлением суспензии.

Была также создана машина, совмещающая операции регенерационного фрезерования с приготовлением и укладкой АГБ-смеси. Эта машина работает в комплекте со специальной дозировочной машиной, оборудованной силосными банками для эмульсии, цемента и воды. Она также позволяет готовить смеси типов Э, М и К.

Позднее было признано более целесообразным отделить функцию фрезерования, предоставив ее фрезе, и облегчить тем самым основную машину.

Технологическая схема, предусматривающая совмещение всех основных операций одной машиной, представлена на рис.6.4.

Рисунок 6.4. Технологическая схема ХР с использованием в качестве ведущей машины фрезы-регенератора и изготовлением смеси типа Э:

1 - каток; 2 - фреза-регенератор; 3 - эмульсиовоз

Здесь в качестве ведущей машины использована фреза-регенератор гусеничного типа.

Перемешивание АГ с добавками осуществляется под кожухом фрезерного барабана, а для укладки АГБ-смеси имеется навесное оборудование, аналогичное установленному на обычных асфальтоукладчиках.

В комплекте с этой машиной работают эмульсиовоз - автоцистерна для транспортировки, хранения и подачи эмульсии (когда готовят смесь типа Э) и (или) суспензатор (когда готовят смеси типов К или М).

Ранее цемент распределяли по покрытию перед фрезерованием специальным цементовозом-распределителем, но эта операция оказалась нетехнологичной из-за пылимости цемента. Применение цементного теста устранило отмеченный недостаток.

Добавление нового минерального материала (если это необходимо) осуществляют, как указано выше.

Ширина фрезеруемой полосы 2 м, но в специальном варианте она может быть увеличена до 2,5 м. Глубина фрезерования достигает 30 см.

Рабочая скорость машины существенно зависит от глубины фрезерования и в среднем составляет 5-7 м/мин.

На регенераторе имеются дозаторы для воды и эмульсии. Специальное прижимное устройство предотвращает образование крупных кусков асфальтобетона в процессе фрезерования. Вибротрамбующий рабочий орган позволяет достичь высокой степени предварительного уплотнения смеси.

Качество перемешивания смеси этой машиной ниже, чем при использовании машин, описанных выше, так как последние оборудованы специальными двухвальными смесителями, а здесь перемешивание осуществляется фрезерным рабочим органом без гомогенизации смеси в поперечном направлении.

На рис.6.5 показаны технологические схемы с использованием в качестве ведущей машины фрезы-грунтосмесителя (далее - стабилизер) на колесном ходу. Эта машина значительно проще упомянутых выше, хотя и совмещает основные операции.

Как правило, стабилизер работает по двухпроходной схеме. Сначала он фрезерует дорожную одежду на заданную глубину, а автогрейдер разравнивает призмы АГ (рис.6.5, а). Затем им же осуществляется перемешивание АГ с добавками при повторном проходе.

Дозировка битума, эмульсии и воды осуществляется насосами, управляемыми микропроцессорами, а цементного теста - насосом суспензатора. Перемешивание АГ с добавками происходит под кожухом фрезерного барабана. Регулируемый по высоте зачистной отвал, расположенный за фрезерным барабаном, улучшает качество перемешивания.

Ширина фрезеруемой полосы - 2,44 м, а глубина фрезерования достигает 50 см. Средняя рабочая скорость при фрезеровании (первый проход) - 7-15 м/мин, а при смешении (второй проход) - 10-20 м/мин.

В зависимости от типа АГБ-смеси стабилизер работает в комплекте со вспомогательными машинами (рис.6.5, б-д).

В отличие от фрезы-регенератора, данная машина не имеет специального оборудования для распределения, выглаживания и предварительного уплотнения смеси. Смесь разравнивает автогрейдер. Отсюда ровность слоя и соответствие заданному поперечному профилю будет ниже, чем по предыдущим схемам.

Стабилизер в качестве ведущей машины используют для ХР обычно на второстепенных дорогах.

Все вышеперечисленные технологические схемы объединяет то, что АГБ-смесь готовят непосредственно на дороге в процессе перемещения строительного потока. Однако возможна схема, при которой АГ, полученный в процессе фрезерования, складируют вблизи дороги. Там же, на полустационарной смесительной установке, готовят смесь, которую транспортируют к месту укладки.

Рисунок 6.5. Технологические схемы ХР с использованием в качестве ведущей машины стабилизера:

а - предварительное фрезерование покрытия; б, в, г, д - изготовление смесей типов: Э, М, В, К соответственно;

1 - автогрейдер; 2 - стабилизер; 3 - каток; 4 - эмульсиовоз; 5 - водовоз; 6 - цементовоз-распределитель;

7 - битумовоз; 8 - суспензатор

6.6 Фрезерование.

Для фрезерования покрытия различные зарубежные фирмы предлагают большое число фрез, отличающихся по ширине фрезерного барабана, мощности двигателя, глубине фрезерования и другим параметрам. Многие из них оснащены устройствами для сбора АГ и погрузки его в автомобили-самосвалы.

Чаще всего используют фрезы с шириной обрабатываемой полосы - 2,0-2,5 м.

Для выравнивающего фрезерования, включающего и выравнивание покрытия в продольном направлении, фреза должна быть оснащена автоматикой, позволяющей работать по струне или с нивелировочной балкой (на колесиках) длиной 5-7 м (ее поставляют фирмы по отдельному заказу).

При выравнивании по струне ее натягивают на металлические штыри, установленные на некотором расстоянии (в зависимости от конструкции следящего устройства) от осевой линии (реже - кромки покрытия) с шагом 10-20 м.

Первый проход фрезы выполняют по струне, установив (с осевой стороны) требуемые глубину фрезерования и уклон фрезерного барабана, а последующие - используя копир, скользящий по выровненной поверхности нижележащего слоя.

Перед выравнивающим фрезерованием целесообразно произвести выравнивающую подсыпку покрытия в местах, где это предусмотрено проектом, используя АГ или асфальтобетонную смесь. Выравнивающую смесь прикатывают.

. Направление вращения фрезерного барабана зависит от глубины фрезерования или и толщины пакета асфальтобетонных слоев (рис.6.6):

- при выравнивающем фрезеровании, когда , и регенерационном фрезеровании, когда не захватывается слой несвязного основания (), вращение фрезерного барабана осуществляется "сверху-вниз" по отношению к направлению движения потока;

- в случаях, когда или , т.е. граница фрезерования проходит между асфальтобетонным и несвязным слоями или ниже с захватом материала последнего, вращение фрезерного барабана осуществляется "снизу-вверх".

Рисунок 6.6. Направление вращения фрезерного барабана в зависимости от глубины фрезерования и толщины пакета асфальтобетонных слоев

Крупность АГ зависит от конструкции фрезерного органа, скорости вращения фрезерного барабана, рабочей скорости движения фрезы, глубины фрезерования, типа асфальтобетона и других факторов.

Чем уже задняя щель под кожухом фрезерного барабана, тем дольше задерживается АГ внутри кожуха и сильнее измельчается. Максимальный размер АГ не может быть мельче максимального размера щебня, входящего в состав АГ.

Чем выше скорость вращения фрезерного барабана, тем мельче АГ по гранулометрии. Обычно при фрезеровании толстых покрытий (более 15 см) используют первую скорость; покрытий средней толщины (8-15 см) - вторую скорость; тонких покрытий (менее 8 см) - третью скорость.

Чем прочнее покрытие, тем более низкая скорость вращения фрезерного барабана требуется для измельчения асфальтобетона.

Третий контролируемый фактор - рабочая скорость фрезы. Чем она меньше, тем мельче получается АГ.

. В процессе фрезерования покрытия зубья фрезерного барабана изнашиваются. Их замена является наиболее дорогостоящей операцией и фактором, снижающим производительность. На износ зубьев влияют твердость асфальтобетона, глубина фрезерования, температура покрытия и другие факторы. Наиболее благоприятная температура для работы зубьев 10-30 °С. В среднем через каждые 10 тыс.м покрытия требуется замена всех зубьев.

Самопроизвольное снижение рабочей скорости фрезы указывает на сильный износ зубьев. Работа с изношенными зубьями может привести к повреждению держателей зуба, что потребует сварочных работ, а следовательно, и к задержке потока.

Зубья необходимо проверять регулярно через каждые 2 ч или в конце захватки.

Во время инспектирования заменяют наиболее изношенные или разрушенные зубья. Обычно причиной разрушения является попадание зуба на захороненные в покрытие металлические предметы или крупные камни.

Зубья требуют замены в случаях, изображенных на рис.6.7 (2-5). Их извлекают из держателя или вставляют в него при помощи специального съемника, входящего в состав инструмента. Два человека могут заменить все зубья за час.

Рисунок 6.7 Виды износа и разрушения фрезерных зубьев:

1 - новый зуб; 2 - зуб со стертой средней частью; 3 - зуб со стертой стороной;

4 - зуб с частично разрушенным наконечником; 5 - зуб со стертым наконечником

Некоторые из снятых зубьев, подходящих по длине, могут быть использованы для замены разрушенных.

Производительность фрезы точно указать трудно из-за большого числа влияющих факторов. Обычно ее определяют на опытной секции или с учетом имеющегося опыта работы в подобных условиях. Если рабочая скорость в данных условиях определена, то производительность определяется просто.

Например, при ширине обрабатываемой полосы 2,42 м, рабочей скорости 10 м/мин и коэффициенте использования рабочего времени 80% часовая производительность составит:

м.

7 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

7.1 Оценка природных условий

Оценка воздействия поверхностного стока с автомобильной дороги на водную среду.

Загрязнение водотоков поверхностными водами с автомобильной дороги и мостов составляет незначительный удельный вес от загрязнения водной среды отходами промышленного и химического производства. Оседающие на покрытие автомобильной дороги пыль, продукты износа покрытия, шин и тормозных колодок, выбросы от работы двигателей автомобилей, материалы, используемые для борьбы с гололедом, пылеподавления и т.д. при смыве дождевыми и талыми водами приводит к насыщению вод поверхностного стока различными загрязняющими веществами, в числе которых взвешенные вещества, нефтепродукты (бензин, дизельное топливо, масло, мазут и др.), которые затем могут попадать в водотоки.

При решении вопроса необходимости очистки поверхностных сточных вод и расчете предельно допустимого сброса загрязняющих веществ в водный объект руководствовались Санитарными правилами и нормами (СанПиН 2.1.5-980-00) Водоотведение населенных мест. Санитарная охрана водных объектов. Гигиенические требования к охране поверхностных вод.

В связи с тем, что проектируемая дорога проходит вне пределов водо-охранных зон, и далее 500 метров от близлежащих пунктов водопользования сбор дождевых и талых вод с поверхности автомобильной дороги производится кюветами, со сбросом на рельеф или к перепускным искусственным сооружениям без очистки. Эрозии почв не наблюдается, так как дорога проходит по залесенной местности, откосы насыпи земляного полотна укрепляются засевом трав. На водоперепускных сооружениях, трубах и мостах тип укрепления принят в соответствии с расчетом допускаемых для них скоростями течений. Действующие водотоки не являются зоной промышленного рыболовства.

Оценка загрязнения атмосферного воздуха и придорожных территорий пылью, продуктами загрязнения и износа покрытия. Запретные мероприятия.

Почти все технологические процессы по реконструкции автомобильной дороги вызывают выделение пыли, загрязняющей атмосферный воздух и придорожную полосу. Выделение пыли происходит при разработке грунта и его транспортировке; при погрузочно-разгрузочных работах и транспортировке сыпучих материалов; движении транспортных средств; при укладке, разравнивании и уплотнении каменных и других материалов.

Пылеобразование на дороге происходит в результате износа покрытия, внесения колесами автомобиля на проезжую часть грязи и пыли, а также износа автопокрышек. На интенсивность пылеобразования влияют физико-механические свойства материалов и состояния покрытия, скорость движения автотранспорта и типы движущихся по дороге автомобилей, погодно-климатические условия в районе проложения трассы.

Для предотвращения пылеобразования проектом предусматривается поливка грунта водой в сухой период лета при отсыпке земляного полотна с доведением его до оптимальной влажности. Поливка водой для обеспыливания также предусматривается при устройстве песчаных и щебеночных оснований.

Во избежании заноса грязи на покрытие дороги длина устройства дорожной одежды на пересечениях и примыканиях принята в соответствии с требованиями СНиП 2.05.02-85 и 5.5.

Перевозка пылящих материалов (цемент, известь и др.) производится в специальных машинах

Оценка уровня шумового воздействия транспорта. Средства защиты от шума.

Оценка воздействия на окружающую среду транспортного шума не производится, так как в зону влияния дороги не попадают селитебнопромышленные территории населенных пунктов, санитарно-курортные зоны, территории сельскохозяйственного назначения, заповедники, заказники.

Оценка уровня вибрационного воздействия транспорта. Специальные методы защиты.

Движение автомобиля по дороге сопровождается процессом вибрации, которая воздействует через механическую систему на человека, пользующегося автомобилем, и через дорожную конструкцию на здания и сооружения, находящиеся в зоне воздействия.

Интенсивность вибрации, передающейся зданиям и сооружениям в придорожной зоне, зависит от количества тяжелых грузовых автомобилей, их скорости, ровности дорожного покрытия, конструкции дорожной одежды, типа подстилающего грунта.

Ровность покрытия обеспечивается устройством покрытия из асфальтобетона, а в конструкцию дорожного основания замещены слои из зернистых несвязных материалов (щебень, песок). Грунты по трассе не водонасыщены. Здания и сооружения вдоль реконструируемого участка отсутствуют.

Учитывая, что все вышеназванные принятые мероприятия позволяют снизить вибрационное ускорение, устройство вибрационного экрана не требуется.

6.2 Воздействие на животный и растительный мир

Реконструируемый участок проходит по залесенной территории, пересекая небольшие заболоченные места. Основной состав леса: сосна, ель, береза, осина.

В пределах изучаемого участка из представителей фауны встречаются лось, медведь, рысь, лиса, заяц. Пернатый мир представлен глухарем, тетеревом, рябчиком и др. птицами.

Проложение трассы автомобильной дороги произведено с максимальным использованием существующей полосы отвода и минимальным дополнительным отводом.

Рубка в придорожной полосе должна быть выполнена в установленном порядке.

Не допускается складирование и сжигание срезанного кустарника и выкорчеванных пней у границ леса и полосы отвода, что влечет создание благоприятных условий для развития и распределения болезней лесов, повреждения огнем деревьев и кустарниковой растительности, а также загрязнения атмосферного воздуха продуктами сгорания. Проектом предусматривается вывозка порубочных остатков, корней деревьев и кустарника в специально отведенные для этого места с последующей засыпкой вскрышными породами.

Учитывая, что радиус распространения корневой системы от ствола дерева, как правило, на 1 метр больше кроны, необходимы следующие мероприятия:

· не допускать переуплотнения грунтов в зоне распространения корневой системы деревьев при проезде дорожно-строительных и транспортных машин.

· Засыпка зон распространения корневой системы не должна превышать толщину более 0,5 м.

· Запрещается слив и заправка горюче-смазочных материалов, складирование активных химических веществ (солей, ядохимикатов), разведение костров, которые могут вызвать повреждения деревьев и их корневой системы.

· Для защиты стволов деревьев от механических повреждений, возможных при строительстве, рекомендуется применять специальные ограждения из старых шин, которые не должны соприкасаться со стволами деревьев.

Следует отметить, что прохождение автодороги через лесные массивы создает проблемы возможности заболачивания и осушения. Проектом предусмотрены отверстия водопропускных труб и уклоны с таким расчетом, чтобы обеспечить беспрепятственный сток воды, тем самым исключить подтопление и заболачивание.

Планировка территории, исключение мест застоя воды, своевременная уборка и захоронение порубочных остатков не дает условий для размножения комаров и клещей.

В целях предотвращения лесных пожаров, борьбы с ними необходимо соблюдать Лесной кодекс. Обслуживающим организациям данного участка дороги - Пудожскому ДРСУ, Медвежьегорскому ДРСУ в месте с администрацией районов ежегодно предусматривать мероприятия и составлять оперативные планы по борьбе с лесными пожарами.

Все вышеперечисленные мероприятия позволяет сохранить и не нарушить сложившиеся условия произрастания растений и обитания животных в данной местности.

6.3 Мониторинг в процессе эксплуатации автомобильной дороги

Для обеспечения надлежащего мониторинга необходимо подготовить развернутый план трассы с указанием пунктов и участков подлежащих регулярному, периодическому и эпизодическому контролю:

Регулярному контролю подвергается:

· Санитарное состояние дороги и придорожной полосы.

· Состояние проезжей части обочин откосов и обстановки дороги.

· В зимнее время участки дороги подвержены снегозаносам.

· Изношенные шины автомобилей и других механизмов вывозятся на регенерацию и переработку.

· В случае аварии на дороге необходим контроль направления потока горюче-смазочных материалов и других вредных жидкостей, в целях недопущения их на прилегающие к автодороге территории.

Периодическому наблюдению подвергаются:

· Подъем паводковых вод на мостовых переходах и железобетонных трубах.

· Подъем грунтовых вод на равнинных участках лесных угодий.

· Состояние древесных и кустарниковых культур в лесных массивах прилегающих к трассе автомобильной дороги.

Эпизодическому контролю подвергаются:

· Водопропускные трубы, заложенные под дорогой - чтобы гарантировать пропуск талых и дождевых вод. Состояние укрепления дна и откосов у входящих и выходящих отверстий труб.

· Развитие травянистой растительности в свободных зонах.

· Сбор грибов, ягод в защитных лесных полосах с предупреждением населения об их загрязненности металлами и бензанирином.

ЗАКЛЮЧЕНИЕ

В данном проекте рассмотрено производство и организация работ при реконструкции автомобильной дороги. В проекте рассчитано: дорожная одежда, технологические карты, произведен сметный расчет реконструкции.

В качестве научно-исследовательского раздела рассмотрено обновление асфальтобетонных покрытий, преимущественно способом холодной регенерации. При этом выделены разделы по подбору смесей, рассмотрены технологические процессы регенерации покрытий.

Все данные, использованные и рассчитанные в данном проекте могут реально использоваться в строительстве автомобильных дорог.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. СНиП 2.02.01-82 Строительная климатология и геофизика. - М.: ЦИТП Госстроя СССР, 1983 - 136 с.

2. СНиП 2.05.02-85 Автомобильные дороги. - М.: Госстроя СССР, 1986 - 51 с.

3. СНиП 2.01.14-83 Автомобильные дороги. - М.: Госстроя ССР, 1984 - 109 с.

4. СНиП 1.02.07-87 Инженерно-геологические изыскания. - М.: Госстроя СССР, 1988 - 78 с.

5. СНиП III-8-76, п.3.68 Автомобильные дороги. - М.: Госстроя СССР, 1977 - 115 с.

6. «Автомобильные дороги», март 1997 год, «Издательство дороги», 64 с.

7. ОДН 218.046-01 Проектирование нежестких дорожных одежд. Юмашев В.М., Казарновский В.Д. и др. - М.: Информавтодор, 2001 - 145 с.

8. ГОСТ 9128-97 Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия. - М.: Издательство стандартов, 1997 - 45 с.

9. СНиП 3.01.01-85 Нормы продолжительности строительства и задела в строительстве предприятий, зданий, сооружений и дорог. - М.: ЦИТП Госстроя СССР, 1986 - 528 с.

10. СНиП 4.02.01-85 Инструкция о составе, порядке разработке, согласования и утверждения проектно-сметной документации на строительство предприятий, зданий, сооружений и дорог. - М.: ЦИТП Госстроя СССР, 1991 - 258 с.

11. СНиП 1.04.03-85 Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений. - М.: ЦИТП Госстроя СССР, 1991 - 523 с.


Подобные документы

  • Общие данные для проектирования автомобильной дороги. Разработка вариантов трассы на карте. Земляное полотно и дорожная одежда. Обустройство дороги, организация и безопасность движения. Определение нормативов перспективной интенсивности движения.

    курсовая работа [36,9 K], добавлен 29.09.2009

  • Характеристика и анализ природных условий района проложения трассы. Рельеф, растительность и почва, геоморфология, инженерно-геологические и гидрогеологические условия. План, продольный профиль, земляное полотно и дорожная одежда района проложения дороги.

    курсовая работа [1,1 M], добавлен 26.12.2013

  • Проектирование плана и продольного профиля автомобильной дороги. Затраты на приобретение земельных угодий под строительство. Конструирование дорожной одежды. Расчет стока ливневых вод. Борьба со снегозаносимостью. Организация и безопасность движения.

    дипломная работа [958,0 K], добавлен 14.06.2014

  • Обоснование необходимости капитального ремонта автомобильной дороги и назначение норм проектирования. Составление ведомости углов поворота и кривых. Основные параметры земляного полотна. Дорожная одежда и проезжая часть. Расчет объемов земляных работ.

    дипломная работа [1,2 M], добавлен 27.07.2016

  • Обоснование вида шероховатой поверхности автомобильной дороги. Определение потребности строительных материалов для устройства дорожной одежды. Технологические расчеты при устройстве асфальтобетонного покрытия из горячих смесей. Транспортные работы.

    курсовая работа [2,7 M], добавлен 23.01.2014

  • Технологическая карта на возведение земляного полотна и строительство дорожной одежды. Расчёт производительности машин. Мероприятия по охране труда. Периодический контроль и промежуточные приемки работ. Схемы операционного контроля качества работ.

    курсовая работа [178,3 K], добавлен 09.11.2010

  • Работа автомобильного транспорта в единой транспортной системе России. Технологические процессы, определяющие порядок содержания, технического обслуживания, ремонта подвижного состава и автомобильных дорог. Основные элементы технического оснащения.

    курсовая работа [195,5 K], добавлен 26.09.2011

  • Определение фактической и требуемой категории автомобильной дороги. Оценка транспортно-эксплуатационного состояния автомобильных дорог. Планирование дорожно-ремонтных работ на основе результатов диагностики в условиях недостаточного финансирования.

    дипломная работа [1,8 M], добавлен 12.01.2010

  • Краткая характеристика участка автомобильной дороги. Определение категории дороги и ее основных параметров. Мероприятия по содержанию в зимний период. Содержание автомобильных дорог. Разработка мероприятий по уходу за участками с пучинистыми грунтами.

    курсовая работа [1,6 M], добавлен 27.06.2016

  • Организация и технология производства работ по восстановлению автомобильной дороги методом холодного ресайклинга. Организация и технология производства работ по капитальному ремонту. Строительство асфальтобетонного покрытия. Калькуляции затрат труда.

    дипломная работа [270,3 K], добавлен 19.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.