Симбионтное пищеварение у кроликов и пути увеличения использования углеводов кормов

Биохимический состав, особенности потребления растительных кормов и пути адаптации кроликов к их усвоению. Скорость и порядок продвижения кормов по пищеварительному тракту кроликов. Возрастные особенности пищеварения и всасывания питательных веществ.

Рубрика Сельское, лесное хозяйство и землепользование
Вид диссертация
Язык русский
Дата добавления 22.11.2011
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Важнейшая роль в этих процессах принадлежит микроорганизмам-симбионтам, населяющим преджелудки. Благодаря их деятельности, содержимое рубца имеет более широкий набор ферментов, чем химус тонкого кишечника и способно расщеплять практически все известные пищевые компоненты (Дегтярев В.П., 1970; Bryant M.P. et al, 1958; Dehority B.A., 1967 и др.).

В отличие от жвачных, у моногастричных млекопитающих гидролиз основных компонентов корма происходит, главным образом, в тонком кишечнике, под действием ферментов пищеварительных желез.

Тонкий кишечник кроликов - самый длинный отдел. На него приходится 60 % общей длины кишечника, в то время как на ободочную кишку - 30 %, а на слепую всего 10 %. Ворсинки двенадцатиперстной кишки представляют собой широкие волнообразно изогнутые и плотно расположенные пластинки, на поверхности которых заметны вертикальные бороздки. В каудальном направлении ворсинки сужаются и принимают конусообразную форму.

В двенадцатиперстной кишке неглубокие крипты содержат много бокаловидных клеток, которые часто встречаются и среди эпителиоцитов, покрывающих ворсинки. Все они интенсивно окрашиваются на нейтральные и кислые МПС. Ворсинки в двенадцатиперстной кишке невысокие, но плотно расположенные, их подстилают мощным слоем, примерно равном по толщине ворсиночному, дуоденальные железы. Они, помимо клеток мукозного типа, содержат также серозные клетки, имеющие темную цитоплазму и более крупное ядро. Высота ворсинок, относительно небольшая в начальной части, быстро увеличивается и остается стабильной на всем протяжении кишечника, за исключением самых каудальных его частей.

В тощей кишке ворсинки благодаря поперечным перетяжкам приобретают на срезе фестончатые очертания. Глубоки крипты и эпителий ворсинок содержат много бокаловидных клеток, показывающих слабую реакцию на кислые МПС и интенсивную - на нейтральные.

В подвздошной кишке крипты развиты слабо, а ворсинки принимают более изрезанные очертания. Среди эпителиоцитов, покрывающих ворсинки, реже встречаются бокаловидные клетки. Строма ворсинок, богатая лимфоидными элементами, утолщается (Наумова Е.И., 1981).

В тонком кишечнике на углеводы воздействует система карбогидраз, гидролизующая как поли- (амилазы, декстриназы), так и дисахариды (мальтазы, лактаза, сахараза). Активность карбогидраз в химусе тонкого кишечника свиней и кроликов в 50-100 раз выше, чем у жвачных животных (Дегтярев В.П., 1974).

Ведущим продуцентом ферментов, поступающих в тонкий кишечник, является поджелудочная железа (Духин И.П., 1974; Дегтярев В.П. с соавт., 1977), секретирующая у кроликов непрерывно.

С панкреатическим соком выделяется ряд ферментов, действующих на все питательные компоненты пищи. Из карбогидраз в панкреатическом соке представлены различные амилазы. Они осуществляют гидролиз крахмала и гликогена до декстринов и мальтозы (Дегтярев В.П., 1974; Козлов А.С., 1991).

К пептидгидролазам относятся трипсин, химотрипсин и полипептидазы. Важнейший из них - трипсин, поступающий в просвет кишечника в неактивном состоянии в виде трипсиногена.

Под действием фермента кишечного сока энтерокиназы, от неактивной молекулы трипсиногена отщепляется пептидный фрагмент, в результате чего трипсиноген превращается в трипсин (Шлыгин Н.П., 1947).

После этого, все протеолитические ферменты, поступающие в кишечник в неактивном состоянии, такие как химотрипсин, карбоксипептидаза и другие, активизируются под действием трипсина (Ноотроп Д. с соавт., 1950).

Трипсическая и полипептидазная активность панкреатической ткани у кроликов несколько выше, чем у крупного рогатого скота и свиней, очевидно, это связано с копрофагией, и необходимостью переваривать микробный белок. Липолитическая же активность поджелудочной железы в несколько десятков раз ниже, что компенсируется высоким уровнем липаз в слизистой тонкого кишечника (Дегтярев В.П., 1974).

Интенсивной секреторной деятельностью отличается также печень кролика. Желчный проток открывается в самом начале двенадцатиперстной кишки, поэтому химус, попадая в кишечник, сразу подвергается воздействию желчи.

По мнению И.П. Павлова, главная функция желчи состоит в смене желудочного типа пищеварения на кишечный тип, подавлении действия пепсина, стимуляции активности ферментов поджелудочного сока, в особенности липазы.

Желчь обладает некоторой амило- и протеолитической активностью, усиливает активность трипсина и амилазы, способствует эмульгированию жира, принимает участие во всасывании жирных кислот, каротина, жирорастворимых витаминов, холестерина, аминокислот, усиливает перистальтику кишечника и оказывает бактериостатический эффект.

Желчь выделяется у кроликов прерывисто в среднем в количестве 6,3 мл в час. Основной желчной кислотой является гликодеоксихолиевая, желчным пигментом - биливердин.

К главным кишечным ферментам относятся энтерокиназа, лейцинаминопептидза, аминотрипептидаза, дипептидаза, катепсины, щелочная и кислая фосфатазы, инвертаза, лактаза и амилаза. Они попадают в просвет кишечника с кишечным соком и со слушенным эпителием и осуществляют полостное пищеварение.

Однако значение полостного пищеварения существенно изменяется с возрастом кроликов. Так, у 4-6 дневных крольчат полостное пищеварение почти в 5 раз ниже, чем у 24-26 дневного молодняка, однако, гидролиз крахмала у них осуществляется даже несколько более эффективно (Уголев А.М. с соавт., 1964).

У подсосных крольчат активность трипсина в стенке кишечника в 10 раз, а химотрипсина - в 2-3 раза выше, чем у взрослых животных. Эти данные свидетельствуют в пользу преобладания пристеночного пищеварения у молодых животных.

Пристеночное или мембранное пищеварение осуществляется на поверхности щеточной каймы эпителия тонкого кишечника в так называемом гликокаликсе, имеющем огромную поверхность. В результате гидролиза образуются мономеры, которые всасываются в кровь.

По имеющимся данным, ферменты, участвующие в мембранном гидролизе (за исключением пептидаз) распределяются в кишечнике не равномерно.

Активность лактазы и моноглицеридлипазы снижается от двенадцатиперстной кишки к подвздошной. В последней максимальную активность проявляют трегалаза, эстераза, мальтазы, кислая и щелочная фосфатазы.

Процессы завершения гидролиза питательных веществ в кишечнике и всасывания образовавшихся продуктов долгое время представляли загадку для исследователей. Лишь с проникновением в гистологическое строение кишечной стенки появилась возможность для их детального исследования.

Стало известно, что клетки кишечного эпителия - энтероциты ассиметричны, а на их апикальной поверхности, обращенной в полость кишки, располагаются микроворсинки, которые образуют щеточную кайму, обрамляющую эпителий.

Особенностью энтероцитов является также сравнительно развитый гликокаликс, покрывающий ворсинки. Его нитевидные структуры мукополисахаридной природы создают объемную сеть с небольшими ячейками (Елецкий Ю.К. с соавт., 1979).

Именно в щеточной кайме и гликокаликсе происходит заключительный гидролиз до мономеров, их связывание со слизистой оболочкой и последующий переход в клетку. Значительный вклад в понимание механизмов этого процесса внесло учение А.М. Уголева о мембранном пищеварении.

Всасывание образующихся мономеров происходит в форме активного переноса. Во всяком случае, в отношении глюкозы это можно считать доказанным. В ряде экспериментов из щеточной каймы выделен специфический белок, связывающий глюкозу и участвующий в ее транспорте. Связывание носит характер насыщения, зависит от температуры и конкурентно ингибируется галактозой и флорицином.

Особенностью связывающего белка является также стереоспецифичность его в отношении D-изомера и зависимость от присутствия в среде катионов натрия (Ito J., 1969; Faust F.P., 1975; Semenza K. et al, 1977; Lemaire J. et al., 1978; Poiree C. et al, 1979).

Активный перенос продуктов гидролиза через мембрану в кровь осуществляется специализированными транспортными белками с затратами энергии (в виде АТФ), всасываемость аминокислот зависит от их соотношения в гидролизате. Диффузно, по градиенту концентрации всасываются, как правило, лишь минеральные компоненты.

По ходу кишечника количество секретируемого сока уменьшается. Из изолированного участка двенадцатиперстной кишки длиной 6-8 см в течение часа выделялось 3,3 мл сока, переваривающая сила которого по Метту составляла по яичному белку - 2,8, желатину - 9,0, крахмалу - 12,3 мм. Из изолированного отрезка подвздошной кишки за час выделилось всего 0,5-0,9 мл сока с рН 7,1-7,6. (Леонтюк С.В., 1945).

Тощая кишка - самый длинный участок тонкого кишечника, однако время прохождения пищевых масс через нее составляет всего 10-20 минут, в то время как в подвздошной кишке пищевые массы задерживаются на 30-60 минут.

Таким образом, в дистальном участке тонкого кишечника, казалось бы, должны создаваться условия для бурного развития микрофлоры. Этому способствует слабощелочная реакция среды, более длительная задержка химуса и низкая активность эндогенных ферментов. Однако этого не происходит, концентрация ЛЖК на этом участке не превышает 0,9 мМ/г.

Объясняется это явление, по-видимому, тем, что мономеры, образующиеся на заключительных этапах пищеварения в ультрапорах гликокаликса, недоступны для микроорганизмов с их диффузным способом питания.

Между тем, в опытах зарубежных исследователей было показано, что в желудке и тонком кишечнике происходит переваривание нейтрально-детергентной (Gidenne T. Et al., 1989; Merino J.M et al., 1992) и сырой клетчатки (Yu B. et al, 1987), а также полисахаридов некрахмальной природы (Gidenne T., 1992).

Частично эти результаты объясняются авторами за счет ксиланаз и пектиназ микробного происхождения, обнаруженных в этих органах (Marounek M. et al, 1995).

Однако Рамос (1995) in vitro наблюдал тот же уровень снижения нейтрально-детергентной клетчатки при обработке корма соляной кислотой и пепсином, а затем панкреатическими ферментами (Ramos M.A., 1995).

В связи с развитием электронной микроскопии и тонких физиологических методик в 60-е годы прошлого столетия была открыта новая сторона деятельности желудка и тонкого кишечника - гормональная. В антральной области желудка и в двенадцатиперстной кишке у лабораторных животных были обнаружены новые типы клеток, не идентифицируемые методами световой микроскопии.

Вассало с сотрудниками (Vassalo G. et al, 1969) обнаружили в слизистой пилорического отдела желудка кошки два типа клеток, продуцирующих окситриптамин и гастрин, а также третий тип клеток, функция которых осталась невыясненной. В фундальном отделе желудка ими были выявлены клетки, продуктом которых является окситриптамин и клетки, напоминающие б-клетки инсулярного аппарата поджелудочной железы.

В антральном отделе желудка хорька (Preifer C.J. et al., 1969) был идентифицирован новый тип клеток, предположительно секретирующих гастрин. Новые виды клеток выявлены также в пилорическом отделе желудка человека, собаки, мыши и крысы.

Основные итоги в изучении энтериновой системы были подведены А.М. Уголевым (1978). В его монографии подробно освещается функциональная роль кишечных гормонов не только в регуляции процессов пищеварения, но и их участие в общем обмене веществ в организме.

Согласно А.М. Уголеву, в ответ на поступление пищи в желудок слизистая его антральной части выделяет гастрин, стимулирующий секрецию желудочного сока с малым количеством пепсина и высоким содержанием кислоты. Существование другого гормона, выделенного из слизистой тонкого кишечника, - энтерогастрона - не считается вполне доказанным, так как он не был получен в чистом виде, но физиологическое действие фактора, соответствующего энтерогастрону, заключается в торможении кислой желудочной секреции.

Главный эффект желудочно-кишечного гормона секретина заключается в стимуляции секреции жидкой части панкреатического сока. Кроме того, секретин тормозит выделение гастрина и, соответственно, продуцирование соляной кислоты в желудке, но усиливает пепсическую активность. Холецистокинин, продуцируемый слизистой двенадцатиперстной кишки, вызывает сокращение желчного пузыря.

К настоящему времени известно около 20 гормонов и субстанций, выделенных из слизистой желудка и кишечника и оказывающих регуляторное действие на секрецию пищеварительных соков. Однако никто не анализировал специально особенности их действия у разных млекопитающих. По мнению Л. Проссера (1977), основные типы гормонов сходны у всех позвоночных.

Однако в упомянутой выше сводке А.М. Уголева содержатся факты, позволяющие думать, что это не так. Например, секретин тормозит секрецию соляной кислоты в желудке у собаки, человека, крысы, но не вызывает подобную реакцию у кошки.

Обнаружены некоторые видовые различия в химическом строении гастринов и их молекулярном весе. Результаты хроматографического исследования показали, что вилликинин (гормон, стимулирующий подвижность ворсинок тонкого кишечника) имеет видовую специфичность в химическом строении у кролика по сравнению с человеком, быком, свиньей. Кроме того, вызывает сомнение существование гормона холецистокинина у млекопитающих не имеющих желчного пузыря. Перечень подобного рода можно составить и по характеру распределения гормонов в различных участках тонкого кишечника у разных видов животных.

Во всяком случае, гормональная регуляция секреции пищеварительных соков оказывает на симбионтную микрофлору лишь опосредованное влияние.

Таким образом, возможность симбионтной ферментации корма в тонком отделе кишечника, как и в желудке, является пока не подтвержденной.

Нет сведений и о степени обеднения химического состава химуса за время его прохождения через тонкий кишечник. В итоге неясно, какие непереваренные компоненты корма достигают слепой кишки и поступают в распоряжение симбионтов.

Известно лишь, что липиды и простые углеводы усваиваются сравнительно полно, а на рационах, содержащих большое количество крахмала, часть его не успевает перевариться и поступает в толстый отдел кишечника (McNitt J.I., 1996).

Между тем эти данные позволили бы дать количественную оценку вклада эндогенной и симбионтной ферментации в пищеварительные процессы у кролика.

1.5 Пищеварение в толстом отделе кишечника

Толстый отдел кишечника состоит из объемистой слепой кишки, в которой может содержатся до 40 % химуса всего пищеварительного тракта и ободочной кишки.

Слепая кишка представляет собой орган оливково-бурого цвета. На ее поверхности четко выделяются перетяжки, которым с внутренней стороны соответствует спиральная складка, глубоко вдающаяся в просвет кишки. Заканчивается слепая кишка червеобразным отростком - аппендиксом, представляющим собой лимфоидное образование. В области слияния подвздошной и слепой кишки расположен еще один лимфоидный орган - дивертикул, имеющий округлую форму.

В слепой кишке хорошо развита мускульная оболочка, особенно ее круговой слой. Слизистая образует неглубокие, редко расположенные крипты, разделенные широкими соединительнотканными перегородками, насыщенными лимфоидными элементами.

Крипты состоят из однородных цилиндрических эпителиоцитов, среди которых встречаются бокаловидные клетки, сконцентрированные главным образом в основаниях крипт. Бокаловидные клетки и всасывающая каемка эпителиоцитов показывают положительную реакцию на кислые и нейтральные МПС.

На поверхности слизистой слепой кишки не было обнаружено прикрепленных симбионтов, как это имеет место у многих грызунов. На основание этого делается вывод, что зайцеобразные, как и другие копрофаги обладают преимущественно свободноживущей микрофлорой.

В аппендиксе имеется заполненная химусом полость в 4-5 раз превышающая толщину его стенки. Головки лимфоидных узлов не соприкасаются с химусом, поскольку закрыты окружающими их ячейками и сообщаются с просветом лишь узким протоком. Через эпителий головок наблюдается выселение лимфоцитов (Наумова Е.И., 1981).

Содержимое толстого кишечника обладает гидролитическим действием по отношению почти ко всем составляющим пищи. Однако значение отдельных ферментов химуса в преобразовании питательных веществ в этом отделе пищеварительного тракта далеко не равноценно.

Большинство авторов склонно считать, что ферментативные процессы в толстом кишечнике в основном связаны с населяющими его микроорганизмами-симбионтами, сбраживающими клетчатку кормов до растворимых легкоусвояемых соединений - летучих жирных кислот (Лебенгарц Я.З., 1975 и др.).

Наряду с этим, в толстом кишечнике имеет место гидролиз и других компонентов пищи. Так, в химусе слепой кишки обнаруживается ряд ферментов тонкого кишечника, причем активность некоторых из них, например, энтерокиназы и щелочной фосфатазы, довольно высока (Анакина Ю.Г. с соавт., 1978).

Другой источник ферментов химуса - кишечный сок. Секреты слепой кишки проявляют некоторую амило-, липолитическую и сахаразную активность.

Но если учесть, что толстый кишечник в целом характеризуется низкой активностью собственных ферментов (Георгиевский В.И., 1990), а ферменты, поступившие в него из вышележащих отделов пищеварительного тракта интенсивно инактивируются вследствие химических и микробных процессов (Астраханцев В.И. с соавт., 1977), то становится очевидным, что основная роль в пищеварении в данном отделе принадлежит бактериям.

Микроорганизмы начинают заселять пищеварительный тракт кроликов с первых дней их самостоятельной жизни. У большинства однодневных крольчат в кишечнике уже обнаруживаются лактобациллы, кокки и бактероиды, а их общее количество может составлять 15 тысяч клеток в 1 мл. химуса (Анакина Ю.Г., 1978).

В молочный период, несмотря на воздействие антимикробных факторов молока и факторов, вырабатывающихся в желудке сосущих крольчат (Canas Rodriguez A. Et al., 1966), наблюдается быстрый рост численности бактерий, которая уже к концу первой недели жизни молодняка приближается к 1 млрд.

При этом в составе микрофлоры обнаруживаются Gastrobacilli, стафилококк и спорообразующие аэробы (Christ-Vietor M., 1973). У крольчат месячного возраста по данным литературы количество симбионтов в химусе слепой кишки почти достигает характерного для взрослых животных уровня.

Облигатные симбионты кроликов являются строгими анаэробами, не образующими спор, и не могут долгое время находиться во внешней среде, поэтому возникает вопрос о способе инокуляции симбионтов у молодняка.

Ранее считалось, что молодые крольчата получают микроорганизмы при поедании цекотрофов матери. Однако последующие исследования опровергли это мнение. Заселение специфической микрофлорой происходило и при предотвращении копрофагии, правда, более медленными темпами. В настоящее время предполагается, что инокуляция происходит уже в половых путях самки (Kovacs M. et al, 2002).

Бактериальные энзимы гидролизуют клетчатку и другие органические соединения, не подвергшиеся перевариванию в вышележащих отделах пищеварительного тракта.

Высокая бактериальная обсемененность химуса слепой кишки (свыше 36 млрд. клеток в 1 г), постоянная температура, оптимальная концентрация водородных ионов (рН 5,8-7,1), буферные свойства содержимого, поддерживаемые экскрецией дивертикула и аппендикса, постоянное поступление пищи, и эвакуация продуктов метаболизма способствуют этому.

По данным Вильямса с сотрудниками (1961) аппендикс в сутки выделяет около 40 мл сока, дивертикул - 22 мл. Их рН составляет 8,1-9,4 и нейтрализует кислые продукты брожения. Кроме того с соками этих лимфоидных образований в слепую кишку поступает большое количество лимфоцитов, очевидно, поддерживающих нормальный состав симбиоценоза.

По мнению Синельникова (1950) в дивертикуле за 1 минуту выделяется около 55 тыс. лимфоцитов, из аппендикса - от 600 до 900 тыс. Аналогичную функцию по всей видимости выполняет и сок слепой кишки, содержащий лейкоциты.

Целлюлозолитические процессы имеют место в толстом кишечнике не только кроликов, но и других видов животных, однако их вклад в переваривание клетчатки кормов существенно различается.

У жвачных до 65% переваримой клетчатки сбраживается в преджелудках (Синещеков А.Д., 1965; Курилов Н.В. с соавт., 1971), условия которых весьма благоприятны для микроорганизмов. В связи с этим, переваримость сырой клетчатки у жвачных наиболее высока и составляет в среднем 56-60% (Козлов А.С., 1991). Роль же толстого кишечника в целлюлолизе у них относительно невелика.

Вероятно, это объясняется тем, что химус толстого кишечника представляет собой сравнительно бедный питательный субстрат, поскольку большая часть доступных нутриентов корма уже усвоена в вышележащих отделах пищеварительного тракта.

По этой же причине переваримость клетчатки у моногастричных животных существенно ниже, чем у жвачных. Исключение составляют лошади, у которых сравнительно высокая переваримость клетчатки (48-52%) обусловлена значительной вместимостью слепой кишки.

У свиней ферментация клетчатки происходит преимущественно в слепой и начальной части ободочной кишки (Ритце В. С соавт., 1968). Переваримость клетчатки типовых рационов у свиней по некоторым данным достаточно высока (30-45%) (Баранчихина В.В., 1963).

Основной продуцируемый целлюлозолитическими бактериями фермент - целлюлаза катализирует разрыв 1,4-гликозидных связей целлюлозы с присоединением молекулы воды. По современным представлениям целлюлазный комплекс состоит по меньшей мере из четырех типов карбогидраз.

Эндоглюканазы атакуют исходный субстрат, приводя к высвобождению целлолигосахаридов различной степени полимеризации и некоторого количества целлобиозы.

Экзоглюкозидазы воздействуют на целлолигосахара с образованием глюкозы.

Целлобиогидролазы расщепляют олигосахара до целлобиозы и, наконец, целлобиаза довершает гидролиз образовавшихся дисахаридов до глюкозы (Синицын А.П. с соавт., 1981; Coughlan M.P. et al., 1979).

Глюкоза, образующаяся в результате гидролиза, представляет для бактерий источник энергии, которая высвобождается при ее гликолизе.

Ключевым моментом процесса, общим для всех живых организмов, является этап фосфорилирования с образованием пировиноградной кислоты и АТФ. Акцептором водорода в этой реакции служит НАД+, нуждающийся в последующем окислении для продолжения метаболизма.

Однако у анаэробов, каковыми являются подавляющее число бактерий слепой кишки, НАД·Н не может быть окислен через систему переноса электронов кислородом в качестве конечного акцептора. Содержание же НАД+ в микробных клетках ограничено.

В этих условиях дальнейшее преобразование пировиноградной кислоты возможно только в направлениях, обеспечивающих регенерацию НАД+ за счет окислительно-восстановительного механизма, включающего либо сам пируват, либо его производные (Роуз Э., 1971; Диксон C., 1982).

Поэтому, в отличие от аэробных форм, у цекальных бактерий процесс превращения пирувата никогда не доходит до углекислого газа и воды, а осуществляется со значительно меньшей энергетической отдачей - через ацетил КоА, преобразуемый в ацетат и, частично, в ацетоацетил КоА, конечным продуктом которого является бутират. Возможна также трансформация пирувата в пропионат через сукцинил КоА.

Подобной биохимической трансформации подвергаются также продукты дезагрегации протеинов - аминокислоты, после их дезаминирования и жирные кислоты.

Конечные продукты брожения входят в состав экстрагируемых из химуса слепой кишки летучих жирных кислот в следующем соотношении: ацетат - 60,7-83,6%, бутират - 10,6-25,4%, пропионат - 6,8-13,9% (Вовк В. и др., 1994).

Несколько иное соотношение было получено в других опытах (Garcia J. et al., 2002) - 62, 26,0 и 12,0 % соответственно. При этом суммарная концентрация ЛЖК варьировала от 18,1 до 99,8 мМ/л.

Соотношение отдельных кислот брожения не остается постоянным. С возрастом доля ацетата снижается, а бутирата, напротив, увеличивается (Bennegadi-Laurent N. et al., 2004).

Наименьшую долю в сумме ЛЖК занимает пропионат. В отличие от жвачных животных, концентрация масляной кислоты у кроликов всегда преобладает над пропионовой. Аналогичная особенность характерна также для бобра (Hoover W.N. et al., 1972).

Образовавшиеся ЛЖК всасываются в оттекающую кровь и вовлекаются в метаболизм.

Предполагается, что ЛЖК в организме животных частично трансформируются в глюкозу. Основным предшественником последней выступает, вероятно, пропионат. Он также усиливает поглощение железа в ободочной кишке, участвует в формировании жирных кислот с длинной цепью, а промежуточные продукты его регулируют кетогенез, неоглюкогенез, уреогенез (Bergman E.N., 1990; Rйmйsy C. et al., 1995).

Неоглюкогенез имеет место уже в процессе резорбции кислот стенкой пищеварительного канала, но наиболее активно осуществляется клетками печени (Горшков Г.И. с соавт., 1971; Курилов Н.В. с соавт., 1973).

Бутират в основном используется в толстом кишечнике и является фактором роста слизистой ободочной кишки. Ацетат усваивается главным образом в печени, где происходит липо- и холестериногенез.

Считается, что за счет ЛЖК кролики обеспечивают до 12% суточной энергии (Калугин Ю.А., 1980; Vernay M., 1987; Chiou P.W.S. et al, 1994).

Летучие жирные кислоты влияют также на подвижность пищеварительного тракта, секрецию кишечника и, в конечном счете, участвуют в интеграции функций толстого отдела (Cherbut C., 2003; Yajima T., 1995.)

Концентрация летучих жирных кислот изменяется с возрастом и увеличивается одновременно с ростом численности целлюлозолитических бактерий (приблизительно с трехнедельного возраста крольчат). В промежутке с 15 до 25 дня жизни, этот показатель увеличивается в четыре раза.

В основном целлюлозолитические бактерии продуцируют кислоты с неразветвленной цепью, в то время как амилолитические - преимущественно разветвленные кислоты (Gidenne T., 1996; Padilha M.T.S. et al., 1995; Piattoni F. et al., 1995; Piattoni F. et al., 1996; Vernay M. Et al., 1975).

Содержание ЛЖК в химусе слепой кишки изменяется в зависимости от времени кормления и периодичности цекотрофии. Установлено, что их концентрация увеличивается в 4 раза после дачи корма и достигает максимума спустя 5 часов. В это же время наблюдается и наиболее интенсивное образование твердых фекалий. Изменение концентрации ЛЖК в данном случае обусловлено антиперистальтическии движениями ободочной кишки и возвращением в слепую кишку большого количества бактерий.

При образовании цекотрофов наблюдается снижение концентрации ЛЖК на 20 %, что, несомненно, является следствием снижения численности цекальных бактерий. В течение суток изменяется и соотношение жирных кислот, зависящее по мнению ряда авторов от скорости поступления различных кормов в слепую кишку (Gidenne T. Et al., 1992; Gidenne T. et al., 1984).

Помимо клетчатки в продукции ЛЖК участвуют крахмал и не переваренный в вышележащих отделах пищеварительного канала белок (после дезаминирования аминокислот), а также эндогенные ферменты, однако относительный вклад этих источников неизвестен (Fraga M.J. et al, 1984; Garcia J. et al, 1996; Motta-Ferreira W. et al, 1996; Carabano R., 1997).

По данным этих же авторов концентрация ЛЖК в химусе колебалась на разных рационах от 3,2 до 8,9 мМ/100г, увеличивалась по мере повышения содержания клетчатки в корме, но высоко лигнизированные грубые корма сильно угнетали эту тенденцию.

Выход ЛЖК при брожении клетчатки с даже с невысоким содержанием лигнина не превышает 25% от общего их количества, в основном сбраживаются пектины, а также, в некоторой степени, эндогенные материалы (ферменты, слущенный эпителий слизистой, муциноподобные вещества) (Chiou P.W.S. et al, 1994).

Их вклад в образование кислот брожения можно оценить по результатам опытов на кроликах, вовсе не получавших пищу. У них содержание ЛЖК в слепой кишке составляло 1,8 мМ/100г. (Vernay M. et al., 1975).

На летучие жирные кислоты приходится около 60% всех карбоновых кислот химуса. Из нелетучих кислот преобладают янтарная - 4,5 мэкв/100 г и молочная - 1,0 мэкв/100 г. Они также являются продуктами жизнедеятельности бактерий.

По данным зарубежных исследователей, концентрация молочной кислоты в химусе слепой кишки составляет в среднем 3,8 мМ/л и не зависит от стадии фекалообразования (Piattoni F. et al., 1995; Vernay M. et al., 1987).

В химусе слепой кишки присутствуют также свободные аминокислоты. Их общая концентрация составляет 852 мкМ с преобладанием глютаминовой, аспарагиновой и аланина, доля которых достигает 70% всех аминокислот. Очевидно, это также продукты жизнедеятельности бактерий. Среда слепой кишки преимущественно протеолитическая, поскольку значительная часть симбионтов способна сбраживать аминокислоты.

Из характерных особенностей ферментации в слепой кишке следует отметить преобладание образования ацетата из водорода и углекислого газа (так называемый восстановительный ацетогенезис), наблюдающийся уже у крольчат, находящихся на смешанном питании. Только с возрастом этот процесс частично замещается образованием метана. До 30-суточного возраста метаногенез фиксируется лишь у отдельных особей и в незначительном объеме. Подобный тип ферментации прямо противоположен тому, что наблюдается при рубцовом пищеварении (Piattoni F., Martens L., Demeyer D., 1995).

Химсостав химуса слепой кишки довольно стабилен и даже содержание животных на диете из какого-либо одного корма (зерно, сено, зеленая масса) не приводит к резким его изменениям.

Соотношение между различными фракциями азота в химусе также почти не зависит от условий кормления. На долю небелкового азота приходится около 37% от общего азота, на долю мочевины и аммиака - 7-8% от общего и 18-21% от небелкового азота.

Концентрация аммиака по данным ряда авторов может быть достаточно высокой и достигать 13-28 мМ/л, что наблюдается как правило при низком сахаро-протеиновом отношении и на рационах богатых клетчаткой (Gidenne T., 1986; Morisse M.J. et al., 1985). Некоторый вклад в повышении концентрации аммиака вероятно вносит и предполагаемая цекально-гепатическая циркуляция азота (Forsythe S.J. et al., 1985; Fraga M.J., 1998).

Концентрация аммиака в химусе слепой кишки с возрастом снижается, в то время как летучих жирных кислот, напротив, возрастает. Так, с 28 по 70 день жизни молодняка содержание аммиака в химусе снизилась на 20 % (Bellier R. et al., 1995; Bennegadi-Laurent N. et al., 2004).

При увеличении концентрации аммиака показатель рН химуса слепой кишки возрастает и, напротив, снижается с ростом содержания ЛЖК. Однако эта закономерность определяет не более 12 % общих изменений реакции среды. Порой определенной взаимосвязи между уровнем аммиака и показателем рН вообще не обнаруживается (Bennegadi-Laurent N. et al., 2004).

Более важным фактором исследователи считают изменение химического состава химуса (Garcia J. et al., 2002).

Приблизительно 25 % цекального аммиака продуцируется из мочевины крови, поглощенной кишечной стенкой (Forsythe S.J. et al., 1985) и затем трансформированной в аммиак расщепляющей мочевину флорой (Emaldi O. et al., 1979; Crociani I. et al., 1984; Forsythe S.J. et al., 1985).

Количественные показатели симбионтных процессов в слепой кишке зависят от ее объема, который существенным образом изменяется с возрастом кроликов.

Инициатором развития слепой кишки выступает преимущественно клетчатка - единственный компонент корма, почти не подвергающийся перевариванию в вышележащих отделах пищеварительного тракта, поэтому интенсивный морфогенез ее начинается при увеличении в составе потребляемой пищи доли кормов растительного происхождения (Chiou P.W.S. et al., 1994).

Снижение уровня клетчатки в рационе сопровождается уменьшением ее уровня и уровня сырого протеина в слепой кишке (Carabano R. et al., 1988), в то время как концентрация крахмала остается низкой (приблизительно 1,5 %; Fraga M.J. et al., 1984). При этом наблюдаются также изенения слизистой слепой кишки и сглаживание ворсинок ободочной кишки (Yu B. et al., 1996). Большинство авторов не сообщает ни о каких существенных изменениях в концентрации конечных продуктов брожения (аммиак, ЛЖК) и pH фактора (Carabano R. et al., 1988; Garcia J. et al., 1995; Bellier R. et al., 1996). При очень низких уровнях клетчатки (ниже 10 %), эффективность ее переваривания была выше за счет увеличения времени пребывания в слепой кишке (Bellier R. et al., 1996).

Сырой протеин, поступающий в слепую кишку состоит из неусвоенного диетарного протеина и эндогенного белка, его количество соответствует примерно одной трети от поступления нейтрально-детергентной клетчатки (Gidenne T., 1992). Качественный состав диетарного протеина, несомненно, влияет на протеин подвздошной кишки, но никакие данные по этому вопросу в доступной литературе не приводятся. С другой стороны, количество протеина, поступившего из подвздошной кишки зависит от происхождения сырой клетчатки корма.

Помимо клетчатки в слепую кишку поступают и другие нутриенты не полностью гидролизуемые в тонком кишечнике. Так, сообщается, что в дистальных участках подвздошной кишки концентрация непереваренного крахмала достигает 8,8 % от сухого вещества (Gidenne T. et al, 2005). Этот крахмал представляет собой легкодоступный субстрат для микроорганизмов, увеличивает плотность микробной популяции и, вероятно, предотвращает различные дисфункции.

В настоящее время некоторые научно-производственные объединения рекомендуют в качестве пробиотиков, повышающих иммунитет человека высокоамилозный крахмал, инулин, пектины, которые не подвергаются перевариванию и беспрепятственно достигают толстого кишечника.

Процессы, подобные рассмотренным выше, происходят в слепой кишке и у других видов животных - бобра, растительноядных гоферов, свиньи, слепых отростках у кур (Boley R.B. et al., 1969; Hoover W.N. et al., 1972; Николичева Т.А., 1979; Николичева Т.А., 1980), у многих обнаружены и целлюлозолитические бактерии.

Отсутствие эндогенных целлюлаз в кишечном соке кролика установлено еще вначале прошлого столетия (Scheunert A., 1906; Hoesslin H. et al., 1910).

Позднее в химусе слепой кишки и фекалиях этих животных идентифицированы типичные целлюлозорасщепляющие виды бактерий (Butirivibrio fibrisolvens, Ruminococcus flavefaciens), присутствующие и в пищеварительном тракте других млекопитающих, в том числе, в преджелудках жвачных животных (Sijpesteijn A.K., 1948; Brown D.W. et al., 1960; Курилов Н.В. с соавт., 1971).

Поскольку морфология и биохимия выделенных форм детально изучены в связи с прегастральным пищеварением у жвачных, представленные результаты представляются вполне убедительными.

Целлюлозолитические бактерии гидролизуют целлюлозу и, как правило, гемицеллюлозу и пектин. Этот процесс осуществляется при непосредственном контакте с субстратом. Кроме целлюлозы, бактерии слепой кишки гидролизуют также белки и легкопереваримые углеводы (Гущина Н.Н., 1968; Павлова Т.Е., 1968).

Образующиеся в ходе микробного гидролиза мономеры сбраживаются до летучих жирных кислот, однако, закисления химуса не происходит, отчасти за счет всасывания продуктов брожения, а также потому, что лимфоидные образования - дивертикул и аппендикса выделяют в просвет слепой кишки щелочный секрет, создающий благоприятные условия для функционирования микрофлоры (Williams J.A. et al., 1961).

По данным Синельникова (1950) за сутки из аппендикса выделяется от 19,2 до 84, из дивертикула - от 7 до 12 мл сока, рН которого колеблется от 8,1 до 9,4. Сок аппендикса и дивертикула содержит небольшое количество амилазы и липазы и не содержит протеолитических ферментов.

Слепая кишка также выделяет пищеварительный сок с рН 7,0-7,3 в количестве 0,6-0,8 мл/час, почти лишенный пищеварительных ферментов.

В экскретах лимфоидных образований содержится большое количество лимфоцитов. Исследованиями Синельникова с сотрудниками установлено, что лимфоциты играют существенную роль в распределении различных микроорганизмов по ходу кишечника (Синельников Е.И., 1950; Синельников Е.И. с соавт., 1953).

В дальнейшем было показано, что лимфоциты при разрушении выделяют лейкины, избирательно влияющие на микрофлору и регулирующие ее состав (Allen L., 1967).

В плане родового и видового состава микроорганизмов-симбионтов слепой кишки в литературе имеются существенные разногласия. Так, по одним данным, кишечная микрофлора кроликов представлена преимущественно грамположительными бактериями-аэробами типа Bacillus subtilis. Вероятно, эти авторы использовали методы восстановления сред не достаточные для культивирования факультативных анаэробов.

В других исследованиях сообщается, что преобладающими микробами в слепой кишке является E. Coli и Streptococcus. Наконец, некоторые исследователи обнаруживают в цекальной флоре большое количество представителей рода Lactobacillus (Калугин Ю.А., 1980)

По разным данным общая численность микроорганизмов в химусе слепой кишки кроликов составляет около 1-10 млрд./г. (Bonnafous R. et al., 1970; Forsythe S.J. et al., 1985). Содержатся и инфузории родов Levanderella, Blepharoplanum, Enterophrya (Kopperi A.J., 1929).

Несмотря на возможное присутствие в симбиоценозе простейших, главенствующая роль в ферментации пищи и синтезе белка принадлежит бактериям.

Наиболее подробно и точно состав анаэробной флоры кроликов рассмотрен в монографии М.А. Тимошко (1990). По ее данным в слепой кишке кроликов преобладают Bacteroides (4 млрд.) Peptococcus (200 млн.), Bifidobacterium (63 млн.), Eubacterium (400 тыс.).

Дрожжи, стрептококки, энтеробактерии и стафилококки обнаруживаются в значительно меньшем числе.

Согласно некоторым данным (Fonty G. Et al. 1979; Fekete S., 1989) численность Bacteroides еще выше и составляет 109 -1011/г.

Численность целлюлозолитических бактерий сравнительно невелика. Из слепой кишки кроликов выделяется большее количество микроорганизмов способных расщеплять гемицеллюлозу и пектин, чем целлюлозу (Jehl N. et al, 1995; Marounek M. et al, 1995; Boulahrouf A. et al, 1991).

Эти данные полностью согласуются с переваримостью отдельных фракций клетчатки у кроликов (Gidenne T., 1996).

Разумов и Геймберг (1962) установили, что в лимфоидных фолликулах аппендикса и дивертикула развиваются бактерии рода Bacteroides. С увеличением размера колоний протоплазма синцития вокруг микробов все больше уплотняется, насыщается белково-полисахаридными структурам и проявляет ярко положительную реакцию на присутствие кислых и щелочных фосфатаз.

С появлением фосфатазной активности в колониях наблюдается лизис бактерий и их гомогенезация. Одновременно с этим в других участках ретикулума происходит образование новых колоний.

Авторы считают, что весь цикл образования и рассасывания колоний носит характер физиологического симбиоза бактерий с организмом. Видимо, микроорганизмы, выделяясь из лимфоидных органов, обеспечивают постоянную инокуляцию слепой кишки.

Вероятно поэтому, представители рода Bacteroides занимают первое место в симбиоценозе слепой кишки и начинают первыми заселять пищеварительный тракт кроликов. (Carabano R. et al., 1998; Gouet P. et al., 1973).

Бактероиды были обнаружены в фекалиях кроликов, а также у жвачных и других растительноядных млекопитающих. (Brown D.W. et al., 1960; Курилов Н.В. с соавт., 1971).

Помимо них, вероятно, активным ферментатором клетчатки является Ruminococcus flavefaciens, выделенный из пищеварительного тракта многих фитофагов (Аyers W.A., 1958).

Среди амилолитических форм известны у кроликов Actinomyces israeli, Bacteroides spp., Dichelobacter nodosus, Mitsuokella multiacidus.

Идентифицированы и охарактеризованы также цекальные пектино-, ксилано- и муколитические бактерии (Sirotek K. et al, 2001, 2003, 2004).

В слепой кишке кроликов присутствуют также представители рода Lactobacillus, выделенные и у других млекопитающих (Тараканов Б.В., 1972), а также Bifidobacterium, численность которых в фекалиях достигает 1010/г. (Круглова Н.М., 1983).

Другие исследователи считают, что лактобациллы вообще не свойственны нормальному цекальному ценозу (Fortun-Lamothe L., Boullier M., 2004).

Из разновидностей, способных утилизировать мочевину выделены Cl. coccoides, Peptostreptococcus productus и minor, Peptococcus magnum, Fusobacterium russii.

У молодых кроликов в желудочно-кишечном тракте преобладают streptococci и enterobacteria.

К сожалению, данные по видовому составу микрофлоры в литературе весьма скудны, обычно приводится лишь материал по количественному соотношению указанных выше родов бактерий.

Между тем, именно видовые особенности определяют интенсивность симбионтной ферментации, соотношение метаболитов и количество микробиального белка, влияют на эффективность усвоения кормов и, в конечном счете, на пищевую специализацию животных.

Приводимые в литературе материалы получены преимущественно культуральными методами, на основе которых трудно составить адекватное представление о динамике численности микроорганизмов в зависимости от возраста и состава рациона.

Это обстоятельство связано с тем, что микроорганизмы-симбионты кроликов далеко не однородны по своему составу и принадлежат к различным таксономическим группам, требующим для своего роста и развития соответствующих питательных сред, а также строгого анаэробиоза.

Считается, что культурально можно выделить лишь 15-20% от общей численности кишечной флоры. Существенным недостатком культуральных методов является также значительная вариабельность получаемых данных.

До сих пор не вполне изучены механизмы влияния отдельных компонентов пищи на целлюлозолитические процессы. В частности неясно, почему переваримость клетчатки снижается при повышении уровня содержания ее в рационе.

Одно из мнений, высказываемых по этому поводу, связывает ухудшение переваримости клетчатки со снижением концентрации протеина и энергии в рационе, а также недостаточным снабжением микрофлоры некоторыми другими питательными факторами, что приводит к угнетению их жизнедеятельности и снижению целлюлазной активности (Курилов, Кроткова, 1971; Калугин, 1980).

Однако увеличение численности микроорганизмов при повышении содержания клетчатки (Калашников А.П., 1978; Имшенецкий И.М., 1953), а также данные, свидетельствующие в пользу конкурентных взаимоотношений между бактериями, ферментирующими различные субстраты (Лищенко В.П., 1966; Лифанов Н.М., 1970; Козлов А.С., 1978) делают это предположение не вполне убедительным.

Согласно другой гипотезе, повышение содержания клетчатки в рационе способствует замедлению эвакуации содержимого преджелудков в нижележащие отделы пищеварительного тракта.

Увеличение численности бактерий в этих условиях приводит к чрезмерному накоплению продуктов их жизнедеятельности, что сказывается негативно на целлюлазной активности (Будная М.В., 1963 и др.).

Однако очевидно, что и этот фактор не может иметь решающего значения в кишечнике, моторика которого усиливается под влиянием клетчатки (Crane G., 1977; Davenport J., 1977).

Особый интерес представляют данные, полученные исследователями в области биокатализа, касающиеся влияния лигнина на процесс гидролиза лигноцеллюлозных субстратов.

Установлено, что лигнин не только экранирует полисахариды и затрудняет их набухание (Rahman M., 1979), но и адсорбирует на своей поверхности ферменты целлюлазного комплекса, выводя их из реакции (Goel F. et al., Клесов A.A. и др., 1985). Кроме того, продукты дезагрегации лигнина - феноксильные радикалы и хиноны могут быть причиной прямой инактивации целлюлаз (Brenil C. et al., 1985).

Относительно слабо изучена ферментативная активность микробной популяции слепой кишки. Исследовалась целлюлозолитическая, ксиланолитическая и пектиназная активность (Boulahrout A. et al., 1991), уреазная (Forsythe S.J.et al., 1985), протеолитическая (Emaldi O. et al., 1979), и амилолитическая активность (Padilha M.T.S et al., 1995). С 36 дня жизни молодняка обнаруживалась также метаногенная активность (Piattoni F. et al., 1996)

Наличие в химусе слепой кишки уреазы побудило многих исследователей к испытанию мочевины в качестве азотной подкормки. Было показано, что мочевина, поступившая с кормом может использоваться микрофлорой слепой кишки для синтеза белка, однако длительное кормление кроликов мочевиной приводит к хронической интоксикации и заболеваниям печени и почек (Stevens, Hume, 1995).

По сравнению с рубцом жвачных животных интенсивность фибролиза в слепой кишке ниже, в то время как амило- и протеолитическая активность отмечены на высоком уровне (Gidenne, 1997).

Влияние возраста на цекальную флору исследовано недостаточно (Fonty G., 1974; Padilha M.T.S., 1995), и взаимоотношения между микрофлорой и характером брожением были установлены сравнительно недавно Padilha и др. (1995). Инокуляция целлюлозолитической флоры начинается с того момента, когда молодняк начинает активно поедать растительную пищу (приблизительно в возрасте 3 недель), и достигает 104 - 107 кл./г между 7 и 9 неделями, в то время как суммарная численность анаэробной флоры достигает взрослого уровня уже в возрасте 15 суток. В промежутке от 15 до 30 суток уровень ЛЖК увеличился с 8 до 35 мМ/л, изменялось отношение пропионат/бутират и концентрация аммиака. Инокуляция целлюлозолитической флоры завершается в пятинедельном возрасте, в то время как содержание ЛЖК продолжает увеличиваться. Вероятно, характер бродильных процессов может зависеть от деятельности различных видов целлюлозолитических бактерий, инокуляция которых происходит в разные возрастные периоды. Так, Marounek M. et al. (1995) сообщили о том, что активность целлюлозорасщепляющих оставалась низкой в промежутке между 4 неделями и 3 месяцами, в то время как активность ксиланаз и пектиназ увеличивалась весьма существенно.

Гидролиз пектина существенно увеличивается с возрастом кроликов и значительно превышает величины, наблюдаемые для других компонентов клетчатки (Gidenne T. et al., 2002).

Исследования также показали более высокое содержание форм бактерий расщепляющих гемицеллюлозы и пектин, чем клетчатку (Boulahrout A. et al., 1991).

Косвенным показателем брожения в слепой кишке служит показатель рН. Однако взаимоотношения этого показателя с активностью целлюлозолитических процессов, степенью деградации клетчатки пока не выяснены.

Ни концентрация, ни тип сены люцерны в стандартных рационах не привели к существенному изменению величины рН (Pote L.M. et al, 1980; Champe V.A. et al., 1983; Gidenne T. et al, 1991; Garcia J. et al, 1995).

Лишь при значительной замене зерна люцерновым сеном и соломой наблюдался рост величины показателя (Bellier R. et al., 1996).

С другой стороны, увеличение в рационе сахарной свеклы заметно повышает кислотность химуса (Garcia J. et al, 1992, 1993; Carabano R. et al, 1997). Вероятно, здесь сказалось повышенное поступление растворимых углеводов в слепую кишку, защищенных от ферментации в вышележащих отделах пищеварительного тракта клетчатковыми оболочками.

Исследованиями в области пищеварения у жвачных животных установлена строгая периодичность микробиальных процессов в рубце, зависимость показателей, характеризующих уровень ферментативной и биосинтетической активности бактерий от времени, прошедшего с момента кормления (Курилов Н.В. с соавт., 1971; Козлов А.С., 1991).

Практически не изучена суточная динамика показателей пищеварения у кроликов, а данные литературы по этому вопросу носят противоречивый характер (Калугин Ю.А., 1980). Так, не отмечено закономерных колебаний в концентрации ЛЖК в химусе слепой кишки в 9 часов, когда происходит продуцирование мягкого кала и в 16 часов, когда выделяется твердый кал.

В зарубежных исследованиях, напротив, установлено, что концентрация ЛЖК во время продуцирования мягких фекалий снижается на 25 % от их уровня, зарегистрированного в фазе образования твердых фекалий (Gidenne T., 1986; Gidenne T., 1995). Полученный результат объясняется эвакуацией из слепой кишки значительной доли (до 20 %) ее содержимого (Gidenne T. et al., 1984).

Длительность пребывания основной части потребленного корма в слепой кишке составляет по данным литературы не более двух суток, после чего кормовые частицы эвакуируются в ободочную кишку.

Последняя также почти не продуцирует собственных ферментов. Сок ободочной кишки содержит в небольших количествах щелочную фосфатазу, неспецифические эстеразы, лейцинаминопептидазу, в-глюкуронидазу.

Ободочная кишка имеет хорошо выраженную ампулу и делится на большую ободочную (восходящая часть), несущую три ряда глубоких мускульных кармашков, выступающих на наружной ее поверхности и разделенных продольными мышечными тяжами, и малую ободочную, снабженную одним рядом мускульных кармашков.

Мускульные кармашки выстланы изнутри ворсинчатой слизистой. Железы ободочной кишки образуют мощный слой под ворсинками. Они состоят из мукозных клеток с зернистой цитоплазмой и базально расположенным ядром. Эти клетки показывают очень интенсивную реакцию на нейтральные МПС (Наумова Е.И., 1981).

Условия в ободочной кишке благоприятствуют продолжению процессов микробной ферментации, но, вследствие быстрого прохождения химуса по ободочной кишке, они вряд ли имеют существенное значение.

Более важной функцией ободочной кишки является сепарация частиц химуса на фракции различного размера. Было высказано предположение, что в результате сепарации химуса в ободочной кишке частицы большего диаметра «упаковываются» в фекальные шарики, а менее грубая фракция, содержащая большое количество микроорганизмов, возвращается в слепую кишку для дальнейшей ферментации (Bjornhag G., 1963), благодаря ретроградному движению в проксимальном ее отделе.

Такой механизм имеет важнейшее адаптивное значение в питании кроликов. При этом существенно увеличивается время ферментации (мелкие частицы задерживаются в пищеварительном тракте на более продолжительное время), сохраняется микробный белок и облегчается переваривание (большая поверхность обеспечивает быструю редукцию).

Наряду с копрофагией процесс сепарации имеет первостепенное приспособительное значение для таких относительно некрупных животных как кролики, имеющих достаточно напряженный метаболизм.

В последствии Ленг Е. (1974), углубил и уточнил представления о процессе образования мягких фекалий. По его мнению, цекотрофы представляют собой содержимое слепой кишки, транзитом прошедшее через ободочную кишку, а твердый кал образуется из содержимого слепой кишки благодаря избирательному отбору грубых частиц.

В этой гипотезе, являющейся в настоящее время общепризнанной, показано и всасывание из проксимального участка ободочной кишки в фазах образования фекалий того и другого вида.

Помимо ферментативных процессов, в толстом отделе кишечника продолжается и всасывание. По данным Файтельберга Р.О (1955), в петле толстой кишки 7% раствор глюкозы за 30 мин. всасывался на 20,7%, а за 60 мин. - на 57,5%.

Подытоживая сказанное необходимо отметить, что недостаточно исследован видовой состав симбиоценоза слепой кишки кроликов, а данные по его ферментативной и общей метаболической активности отрывочны и не позволяют составить представление о характере пищеварительных процессов в зависимости от возраста животных, времени суток, состава рациона.


Подобные документы

  • Хозяйственно-биологические особенности кроликов. Состав кормов для этих животных. Типы, техника и гигиена кормления. Потребность кроликов в энергии и питательных веществах. Откорм и кормление взрослых кроликов и молодняка. Методика составления рационов.

    реферат [41,2 K], добавлен 24.01.2012

  • Пищеварение как первая фаза питания животных. Важность установления питательной ценности кормов. Перевариваемость легкоусвояемых углеводов. Особенности переваривания белков. Коэффициент перевариваемости, факторы, влияющие на перевариваемость кормов.

    реферат [25,6 K], добавлен 25.10.2009

  • Особенности роста и развития домашних кроликов. Строение органов пищеварения. Мясная и меховая продуктивность кроликов. Типы кормления и потребность в кормах. Наружноклеточная и шедовая системы содержания кроликов. Разведение кроликов в крольчатниках.

    курсовая работа [1,1 M], добавлен 10.10.2015

  • Биологические и хозяйственные особенности кроликов: рост, развитие, особенности пищеварения и размножения. Продуктивность мясо-шкурных, мясных и пушных пород. Гигиена содержания, кормление и разведение кроликов. Заразные болезни, лечение и профилактика.

    курсовая работа [135,5 K], добавлен 24.02.2016

  • Исследование понятия питательности корма, современной схемы зооанализа растительных, природных кормов. Характеристика роли питьевой воды, углеводов и липидов в питании домашних животных. Анализ заболеваний, возникающих при нарушениях углеводного обмена.

    реферат [24,3 K], добавлен 11.12.2011

  • Кролиководство - наиболее скороспелая отрасль животноводства. Составление рационов для половозрастных групп животных, определение их структуры. Основные элементы полноценных рационов и их роль в питании кроликов. Контроль качества и полноценности кормов.

    курсовая работа [100,7 K], добавлен 18.10.2012

  • Понятие о переваримости. Особенности переваривания питательных веществ у моногастричных и жвачных животных. Методика и техника определения переваримости питательных веществ корма. Оценка питательности кормов по сумме переваримых питательных веществ.

    реферат [24,7 K], добавлен 11.12.2011

  • Происхождение и одомашнивание кроликов. Крупные и средние мясошкурковые кролики. Мясные и пуховые породы. Биологические особенности кроликов. Особенности ангорской пуховой породы. Поглотительное скрещивание кроликов. Средняя закупочная стоимость мяса.

    реферат [28,9 K], добавлен 12.05.2015

  • Биологические особенности размножения кроликов, применение чистопородного разведения и скрещивания. Микроклимат при содержании кроликов в закрытых крольчатниках. Виды межпородного скрещивания: воспроизводительное, вводное, поглотительное, промышленное.

    контрольная работа [34,8 K], добавлен 02.01.2017

  • Учет и оценка шкурковой продуктивности кроликов, факторы, влияющие на их качество. Мечение и бонитировка кроликов, племенная работа; индивидуальный и групповой подбор родительских пар. Требования к микроклимату в крольчатниках, контроль за его состоянием.

    контрольная работа [28,0 K], добавлен 17.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.