Обработка пищевых продуктов

Характеристика всех технологических процессов обработки пищевых продуктов и приготовления полуфабрикатов, блюд и кулинарных изделий. Требования к качеству продукции. Изменения свойств продуктов под влиянием различных способов их тепловой обработки.

Рубрика Кулинария и продукты питания
Вид учебное пособие
Язык русский
Дата добавления 06.12.2010
Размер файла 122,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Набухание и клейстеризация. Набухание - одно из важнейших свойств крахмала, которое влияет на консистенцию, форму, объем и выход готовых изделий из крахмалосодержащих продуктов. Степень набухания зависит от температуры среды и соотношения воды и крахмала. Так, при нагревании водной суспензии крахмальных зерен до температуры 55 °С они медленно поглощают воду (до 50%) и частично набухают. При этом повышение вязкости не наблюдается. При дальнейшем нагревании суспензии (в интервале температур от 60 до 100 °С) набухание крахмальных зерен ускоряется, причем объем их увеличивается в несколько раз.

В центре крахмального зерна образуется полость («пузырек»), а на его поверхности появляются складки, бороздки, углубления. Свойство крахмальных зерен расширяться под действием термической обработки с образованием внутренней полости связывают с тем, что внутри крахмального зерна (в «точке роста») происходят разрыв и ослабление некоторых водородных связей между крахмальными цепями, которые в результате этого раздвигаются, что приводит не только к увеличению размеров крахмального зерна, но и к разрушению его кристаллической структуры. При просмотре набухших зерен под поляризационным микроскопом «мальтийский крест» не обнаруживается. В процессе набухания крахмальных зерен часть полисахаридов растворяется и остается в полости крахмального зерна, а часть диффундирует в окружающую среду.

Растворение полисахаридов при нагревании крахмала в воде подтверждается данными хроматографического анализа центрифу-гата крахмальной суспензии на колонках из окиси алюминия (рис. 12). Известно, что при пропускании раствора крахмальных полисахаридов через колонку амилопектин адсорбируется в верхней ее части, а амилоза - в нижней. При последующем пропускании через колонки раствора йода амилопектин окрашивается в фиолетовый цвет, а амилоза - в синий.

При нагревании крахмальной суспензии до 50 °С полисахариды практически не растворяются, а при 55'С на колонке появляется зона амилозы, хотя и незначительной высоты, что указывает на растворение этого полисахарида и переход его из крахмальных зерен в окружающую среду. С повышением температуры нагревания суспензии количество растворенной амилозы возрастает, что подтверждается увеличением высоты зоны, окрашенной в синий и темно-синий цвета. Нагревание крахмальной суспензии при 80 °С вызывает наряду с растворением амилозы и растворение амило-пектина.

Дисперсия, состоящая из набухших крахмальных зерен и растворенных в воде полисахаридов, называется крахмальным клейстером, а процесс его образования - клейстеризацией. Таким образом, клейстеризация - это изменение структуры крахмального зерна при нагревании в воде, сопровождающееся набуханием.

Процесс клейстеризации крахмала происходит в определенном интервале температур, обычно от 55 до 80 °С. Одним из признаков клейстеризации является значительное повышение вязкости крахмальной суспензии. Вязкость клейстера обусловлена не столько присутствием набухших крахмальных зерен, сколько способностью растворенных в воде полисахаридов образовывать трехмерную сетку, удерживающую большее количество воды, чем крахмальные зерна'. Этой способностью в наибольшей степени обладает амилоза, так как ее молекулы находятся в растворе в виде изогнутых нитей, отличающихся по конформации от спиралей. Хотя амилоза составляет меньшую часть крахмального зерна, но именно она определяет его основные свойства - способность зерен к набуханию и вязкость клейстеров.

В табл. 3 приведены данные о примерном содержании амилозы в крахмале различного происхождения, температуре его клейстеризации и степени набухания в горячей воде (90 °С), определяемой объемным методом. Здесь же приводятся рассчитанные по вязкости коэффициенты замены одного вида крахмала другим при изготовлении клейстеров. При этом за единицу принимается вязкость клейстера картофельного крахмала 2%-ной концентрации.

Отдельные виды крахмала содержат неодинаковое количество амилозы, имеют разные температуру клейстеризации и способность к набуханию. Коэффициент замены крахмала показывает, каким количеством крахмала других видов можно заменить картофельный для получения клейстеров одинаковой вязкости.

Из различных видов крахмала в основном образуются два типа клейстеров: из клубневых - прозрачный бесцветный желеобразной консистенции, из зерновых - непрозрачный молочно-белый пастообразной консистенции. Клейстер кукурузного амилопекти-нового крахмала по свойствам ближе к клейстеру картофельного. Физико-химические свойства необходимо учитывать при замене одного вида крахмала другим.

Крахмальные клейстеры служат основой многих кулинарных изделий. Клейстеры в киселях, супах-пюре обладают относительно жидкой консистенцией вследствие невысокой концентрации в них крахмала (2-5%). Более плотную консистенцию имеют клейстеры в густых киселях (до 8% крахмала). Еще более плотная консистенция клейстеров в клетках картофеля, подвергнутого тепловой обработке, кашах, в отварных бобовых и макаронных изделиях, так как соотношение крахмала и воды в них 1:2-1:5.

В изделиях из теста, содержащих, как правило, небольшое количество воды (менее 100% массы крахмала), состояние крахмала отличается от состояния его в упомянутых выше изделиях. Крахмальные зерна в них мало обводнены, частично сохраняют форму и структуру; в окружающую среду переходит незначительное количество растворимых полисахаридов.

На вязкость клейстеров влияют не только концентрация крахмала, но и другие факторы. Например, сахароза в концентрациях до 20% увеличивает вязкость клейстеров, хлористый натрий даже в очень незначительных концентрациях - снижает.

Таблица 3 Физико-химические свойства крахмала, выделенного из различных растений

Виды крахмала

Количество амилозы, %

Температура клейстеризации, °С

Степень набухания, %

Коэффициент замены

Клубневые:

картофельный

32,10

58-62

1005

1,00

маниоковый

22,56

60-68

775

2,50

бататный

21,84

58-72

862

1,70

Зерновые:

пшеничный

21,37

50-90

628

2,70

кукурузный

19,25

66-86

752

2,30

рисовый

20,02

58-86

648

2,20

кукурузный амилопектиновый

5,76

62-70

608

1,55

рисовый амилопектиновый

2,91

54-68

405

2,75

Уменьшение вязкости клейстеров наблюдается также при снижении рН. Причем в интервале рН от 4 до 7, характерном для многих кулинарных изделий, вязкость клейстеров снижается незначительно. Однако при более низких значениях рН (около 2,5) она резко падает.

На вязкость клейстеров оказывают влияние поверхностно-активные вещества, в частности глицериды, которые снижают вязкость клейстеров, но являются их стабилизаторами. Причем моноглицериды проявляют эту способность в большей степени, чем диглицериды. Моноглицериды снижают липкость макаронных изделий, предупреждают образование студня в супах, соусах, задерживают очерствение хлеба.

Белки оказывают стабилизирующее действие на крахмальные клейстеры. Например, соусы с мукой более стабильны при хранении, замораживании и оттаивании, чем клейстеры на крахмале, выделенном из муки. В охлажденном состоянии крахмальный клейстер относительно высокой концентрации превращается в студень.

Ретроградация. При охлаждении крахмалосодержащих изделий может происходить ретроградация крахмальных полисахаридов - переход их из растворимого состояния в нерастворимое вследствие агрегации молекул, обусловленной появлением вновь образующихся водородных связей. При этом наблюдается выпадение осадка полисахаридов, в основном амилозы. Процесс может происходить и без видимого образования осадка. Полисахариды в крахмальных студнях высокой концентрации (изделия из теста) быстро ретроградируют, что приводит к увеличению их жесткости - черствению. Объясняется это тем, что физически связанная с полисахаридами вода вытесняется из студня, вследствие чего изделия приобретают более жесткую консистенцию.

Ретроградация полисахаридов усиливается при замораживании изделий. Неоднократные замораживание и оттаивание приводят к полной и необратимой ретроградации полисахаридов и, как следствие, к резкому ухудшению качества кулинарных изделий. Растворы амилопектина ретроградируют значительно медленнее, чем амилозы. Это позволяет использовать их в процессе приготовления изделий, подлежащих длительному хранению, например соусов для замороженных блюд. Применяемый в этом случае амилопектиновый крахмал способствует длительному сохранению исходной консистенции соуса (в течение нескольких месяцев).

Ретроградированный крахмал менее чувствителен к действию ферментов. Ретроградацию полисахаридов можно частично устранить нагреванием. Ретроградированная амилоза растворяется хуже, чем амилопектин.

Деструкция. Под деструкцией крахмала понимают как разрушение крахмального зерна, так и деполимеризацию содержащихся в нем полисахаридов.

При кулинарной обработке крахмалосодержащих продуктов деструкция крахмала происходит при нагревании его в присутствии воды и при сухом нагреве при температуре выше 100 °С. Кроме того, крахмал может подвергаться деструкции под действием амилолитических ферментов. Изменения крахмала при сухом нагреве называют декстринизацией.

Коэффициенты деструкции крахмала при изготовлении различных кулинарных изделий неодинаковы и зависят от вида продукта и условий его обработки.

Деструкцию крахмала хорошо иллюстрируют данные, полученные при пропускании через те же колонки из окиси алюминия (см. с. 54) растворов полисахаридов, которые образуются при нагревании водной суспензии из предварительно подсушенного крахмала.

При пропускании через эти колонки водорастворимой фракции предварительно нагретого до 120 °С пшеничного крахмала в зоне амилозы появляются в отличие от нативного крахмала более низ-

С повышением температуры нагревания суспензий эти вещества накапливаются в водорастворимой фракции. Амилопектин в этом случае появляется на колонке при более низких по сравнению с нативным крахмалом температурах (70 °С).

Снижение молекулярной массы полисахаридов обусловлено их деструкцией в процессе предварительного сухого нагрева крахмала и последующего нагрева его с водой.

Увеличение температуры предварительного нагрева крахмала до 150 °С вызывает более глубокую деструкцию полисахаридов. В этом случае амилоза деполимеризуется до такого состояния, что легко вымывается холодной водой. При этом появляется и растворимая фракция амилопектина. При нагревании водной суспензии такого крахмала при температуре 60°G высота фиолетовой зоны амилозы уменьшается, а при 70 °С зона амилозы практически отсутствует, так как продукты деполимеризации последней, по-видимому, имеют такую низкую молекулярную массу, что не могут образовывать с йодом окрашенные комплексы. j Особый интерес представляет деструкция крахмала в продуктах, подвергнутых предварительной термической обработке (пас-I серованная мука, обжаренная крупа), так как при последующей варке полученные из них изделия отличаются по консистенции от изделий из необработанных продуктов.

Например, при изготовлении соусов используют пшеничную муку, предварительно прогретую в течение нескольких минут до 120 °С (так называемая белая пассеровка) или до 150 °С (красная пассеровка). В обоих случаях при нагревании муки происходит деструкция крахмала, на что указывают коэффициенты деструкции, приведенные в табл. 4.

Судя по этим коэффициентам, степень деструкции крахмала при нагревании муки до 150 °С значительно больше, чем при нагревании ее до 120 °С. Различия в степени деструкции крахмала обусловливают неодинаковую степень набухания крахмальных зерен в приготовленных на белой и красной пассеровке соусах и вязкость последних. На рис. 13 показано, что степень набухания крахмальных зерен белой пассеровки практически не отличается от степени набухания крахмальных зерен непрогретой муки и составляет более 700%. Степень набухания крахмальных зерен красной пассеровки почти втрое меньше, чем белой.

Консистенция соусов на белой пассеровке более густая, чем на красной пассеровке, о чем свидетельствуют кривые изменения вязкости 4,5%-ных суспензий этих пассеровок при нагревании их в вискозиметре от 20 до 100 °С (рис. 14). В пределах температур, при которых происходит клейстеризация крахмала (55-80 °С), у суспензий белой пассеровки вязкость резко повышается, а у суспензий красной пассеровки она снижается.

Взорванные зерна злаков легко растворяются в холодной воде. Коэффициент деструкции может служить критерием оценки качества готовой продукции.

Ферментативная деструкция. С ферментативной деструкцией крахмала мы встречаемся при изготовлении дрожжевого теста и выпечке изделий из него, варке картофеля и др.

Амилолитические ферменты содержатся в муке, дрожжах, специальных препаратах, добавляемых в тесто для интенсификации процесса брожения. В муке присутствуют в основном два вида амилолитических ферментов-а- и (З-амилаза.

а-амилаза (а - 1,4 - глюкан-4-глюкангидролаза) воздействует на а - 1,4 связи беспорядочно и вызывает частичную деполимеризацию крахмала с образованием низкомолекулярных полисахаридов, а продолжительный гидролиз приводит к образованию мальтозы и глюкозы.

р-амилаза (а - 1,4 - глкжан-мальтогидролаза) гидролизует амилозу и боковые цепи амилопектина по месту а - 1,4 связей до мальтозы. Поскольку этот фермент не обладает способностью разрушать связи в точках ветвления амилопектина (а - 1,6), то конечным продуктом являются высокомолекулярные остаточные декстрины.! В пшеничной муке обычно активна р-амилаза, активная а-амилаза встречается в муке из дефектного зерна (проросшего и др.).; Накопление мальтозы в тесте в результате действия р-амила-зы интенсифицирует процесс брожения, так как этот сахар является субстратом для жизнедеятельности дрожжей.

Степень деструкции крахмала под действием р-амилазы увеличивается с повышением температуры теста и продолжительности замеса. Кроме того, она зависит от крупности помола муки и степени повреждения крахмальных зерен. Чем больше поврежденных крахмальных зерен в муке, тем быстрее протекает ферментативная деструкция. Но обычно в муке содержится не более 5-8% поврежденных крахмальных зерен.

Ферментативная деструкция крахмала продолжается и при выпечке изделий, особенно в начальной ее стадии до момента инактивации фермента. При выпечке этот процесс проходит более интенсивно, чем при приготовлении теста, так как оклейстеризованный крахмал легче гидролизуется ферментами.

Инактивация Р-амилазы при выпечке происходит при температурах до 65 °С.

При повышенной активности а-амилазы образуются продукты деструкции, ухудшающие качество изделий из теста - мякиш получается липким, а изделия кажутся непропеченными. Это объясняется тем, что температура инактивации а-амилазы (80 °С) выше, чем р-амилазы, и действие ее продолжается при выпечке, в результате чего накапливается значительное количество низкомолекулярных водорастворимых полисахаридов, снижается способность крахмала связывать влагу.

Однако в некоторых случаях в тесто добавляют препараты а-амилазы, полученной из микроорганизмов Aspergillus oryzae и др., с целью усиления действия р-амилазы. При выпечке действие грибной а-амилазы прекращается при более низких температурах (70-75 °С), чем зерновой а-амилазы, поэтому низкомолекулярных полисахаридов накапливается меньше и качество изделий не ухудшается. Полученные низкомолекулярные полисахариды быстрее гидролизуются р-амилазой, вследствие чего процесс брожения интенсифицируется.

Модификация крахмала. Крахмальные полисахариды являются весьма лабильными, реакционноспособными соединениями. Они активно взаимодействуют с ионами металлов, кислотами, окислителями, поверхностно-активными веществами. Это позволяет модифицировать молекулы крахмала - изменять их гидрофильность, способность к клейстеризации и студнеобразованию, а также механические характеристики студней. Одни виды модификации способствуют повышению растворимости крахмала в воде, а другие ограничивают набухание.

Обширную группу продуктов получают из обычных или модифицированных крахмалов путем деструкции с помощью кислот, щелочей и др., а также в результате действия физических факторов: температуры, механической обработки, замораживания, оттаивания и др.

Если реакция протекает в кислой среде, то наблюдаются процессы деструкции, которые приводят к получению целого ряда продуктов - жидкокипящего крахмала (с низкой вязкостью), патоки, глюкозы.

Примером действия механической обработки может служить сухое расщепление крахмала вибрационным помолом, при котором наряду с механическим измельчением крахмальных зерен происходит процесс деструкции молекул.

В результате реакции гидроксильных групп крахмала с органическими и неорганическими веществами образуются простые и сложные эфиры, в том числе амилофосфорнокислые сложные эфиры, которые часто называют фосфатно-модифицированными крахмалами, а также продукты окисления крахмала.

В зависимости от назначения крахмала разработаны различные варианты проведения клейстеризации, введения добавок (соли, жиров, белков) или наполнителей как отдельно, так и в комбинации друг с другом.

Модифицированный крахмал применяют при изготовлении желейных изделий, мучных кондитерских изделий, отделочных полуфабрикатов типа кремов, в качестве загустителей и стабилизаторов для соусов, мороженого и др. Крахмалопродукты со структурой, подобной образующейся при выпечке хлеба, получают в результате нескольких циклов замораживания и оттаивания крахмальной дисперсии, при этом образуется пористый крахмал, нерастворимый в холодной воде. Применяют его после пропитывания сиропами в качестве начинки для конфет.

Образование красящих, вкусовых и ароматических веществ

Изменение окраски продуктов

После тепловой обработки окраски пищевых продуктов может сохраняться или изменяться, причем чаще всего эти изменения нежелательны. Технология обработки продуктов предусматривает сохранение нативного цвета их или придание желаемого оттенка различными способами.

Примером образования желательной окраски кулинарной продукции может быть серо-коричневый цвет мяса, который оно приобретает при тепловой обработке.

Для колбасных изделий желательна розоватая окраска. Она получается вследствие того, что при предварительном посоле мяса добавляют нитраты и нитриты натрия (или калия), которые, вступая в связь с пигментами мяса, образуют нитрозомиоглобин, сообщающий колбасам стойкий розовато-красный цвет.

Розоватая окраска или отдельные красноватые пятна в готовом кулинарном изделии снижают его органолептическую оценку.

При анализе причин появления аномальной окраски в изделиях из мяса сначала надо исключить нарушение режима термической обработки изделия. Если же термическая обработка проведена тщательно, то аномальная окраска, не соответствующая традиционной, может быть вызвана двумя причинами: сомнительной свежестью мяса или бульона.

В мясе сомнительной свежести (особенно при хранении его упакованным с ограниченным доступом воздуха) накапливаются первичные, вторичные, третичные амины и аммиак. Эти соединения ведут себя подобно нитратам и нитритам при посоле мясопродуктов, так как при тепловой обработке образуют устойчивые розовато-красные гемохромогены.

Вторая причина аномальной окраски - несвежесть бульона, в котором разогревают доброкачественные мясопродукты. Известно, что при хранении бульонов рН среды изменяется в кислую (прокисание) или щелочную (действие гнилостной микрофлоры) сторону. В щелочной среде гем денатурированного миоглобина имеет красную окраску (это легко проверить, сварив кусочек мяса с добавлением питьевой соды).

Подробнее о способах обработки продуктов для сохранения или изменения цвета в желаемом направлении см. в разделах по обработке каждой группы сырья.

Следовательно, появление аномальной окраски как при накоплении аминов и аммиака, так и при изменении среды в щелочную сторону является своего рода «индикатором неблагополучия» и требует устранения вызвавших это причин.

Для придания продуктам желаемого оттенка часто используют кислоты. Например, при припускании филе кур добавляют лимонный сок или лимонную кислоту, которые осветляют изделие и придают ему кремовый оттенок. С этой же целью мозги варят в подкисленной уксусом воде.

Кислая среда улучшает и делает более интенсивным цвет антоцианов (обусловливающих окраску вишен, слив, малины и др.) и пигментов свеклы. В то же время хлорофилл зеленых овощей в кислой среде становится бурым, что нежелательно.

Металл, из которого изготовлена посуда, влияет на окраску готового продукта. Например, в алюминиевой посуде не следует обрабатывать зеленые овощи и свеклу, предпочтительнее использовать емкости из нержавеющей стали.

Изменение окраски может быть обусловлено гидролитическим расщеплением соединений и освобождением красящих веществ (например, флавонов при варке лука, картофеля, белокочанной капусты).

Большое значение для изменения окраски имеет контакт с кислородом воздуха очищенных от кожицы продуктов, содержащих полифенольные соединения (картофель, грибы, яблоки). В этом случае происходит ферментативное потемнение продукта.

Еще чаще встречается так называемое неферментативное потемнение, обусловленное карамелизацией Сахаров, меланоидинообразованием, образованием в корочке обжариваемых и запекаемых изделий продуктов пиролиза белков и деструкции крахмала.

Формирование вкуса и аромата кулинарной продукции

Вкус и аромат готовых кулинарных изделий обусловлены присутствием разнообразных веществ, как содержащихся в продуктах, так и образующихся в процессе их тепловой обработки.

При дегустации всех пищевых продуктов при помощи органа вкуса можно различать только четыре основных вкуса - сладкий, соленый, кислый, горький, а также смесь их. Но в процессе опробования продуктов, особенно с острыми приправами, участвуют рецепторы всех органов чувств, т.е. вкуса, обоняния, осязания и даже болевых ощущений.

Исследователи, занимающиеся органолептическим анализом пищевых продуктов, предлагают слово «вкус» заменить более широким по значению - «вкусность». Однако этот термин не получил еще широкого распространения и поэтому в дальнейшем применяется термин «вкус».

В образовании вкуса кулинарной продукции участвуют многочисленные факторы. Их можно сгруппировать следующим образом. Ключевые вещества. Многим продуктам придают специфический вкус так называемые ключевые вещества, например: в луке - аллилпропилдисульфид, в чесноке - диаллилсульфид, в клубнике - метилфенилглицидат, в ананасе - аллилфеноксиацетат. При нагревании растворов основных нутриентов с N-окисью триметил-амина появляется запах морской рыбы, а при добавке аминова-лерьянового альдегида - запах вареной пресноводной рыбы.

Ароматические вещества пряностей и приправ. В кулинарной практике следует широко использовать пряности и приправы - анис, ванилин, горчицу, кардамон, кориандр, перец, тмин, каперсы, корицу, хрен, лавровый лист, петрушку, пастернак, укроп, сельдерей, эстрагон и др. Вкус и аромат пряностей и приправ обусловливают различные эфирные масла, а также алкалоиды, гликозиды и продукты их гидролиза (состав основных компонентов этих продуктов приводится в. Справочнике технолога общественного питания). В ароматообразовании большую роль играют терпены и их производные.

Пищевые добавки. Ими являются широко распространенные в традиционной кулинарии соль, сахар, кислоты, а также ароматизаторы, которые добавляют в мучные кондитерские изделия. При производстве пищевых продуктов все больше используют интенсификаторы вкуса и добавки для улучшения консистенции или других их свойств.

Поваренная соль добавляется к блюдам и изделиям из овощей, муки, рыбы, мяса. Молоко обладает достаточной интенсивностью вкуса, поэтому к нему соль не добавляют или вводят ее в меньших количествах. Например, на 1000 г. молочного супа положено не более 6 г соли, а в супах других групп норма может быть увеличена до 10 г. Избыток соли в рационе не желателен. Однако при полном отсутствии ее вкус изделий значительно ухудшается (даже жареная говядина без соли почти нейтральна по вкусу). Соль является в известной мере и интенсификатором вкуса основного продукта. Опыты по выбору оптимальных количеств соли для котлетной массы показали, что между посоленными по вкусу и пересоленными образцами есть пограничные участки, где акцентирован вкус мяса.

Сахар в количестве 10-12% вызывает ощущение сладости и подчеркивает вкус блюд и кондитерских изделий. Избыток сахара |. не желателен. Добавление сахара в количестве 0,2-1,5% может улучшить вкус продукции, не придавая ей ярко выраженной сладости (например, сахар добавляют при припускании овощей). В диетическом питании сахарозу можно заменить сорбитом или ксилитом. Из кислот в общественном питании используют лимонную, уксусную, реже винную или виннокаменную.

Ароматизаторами мучных кондитерских изделий служат пищевые эссенции (ромовая, ванильная, лимонная, апельсиновая, клубничная и другие).

Самым распространенным интенсификатором вкуса является глутамат натрия1 (промышленный термин). Это мононатриевая соль глутаминовой кислоты, получаемая из отходов свеклосахарного производства в виде белого мелкокристаллического порошка. Глутамат натрия без запаха, приятного, слегка солено-сладкого вкуса. Он обладает синергическим действием - усиливает вкус продукта, к которому добавлен, не внося собственного оттенка. Наиболее эффективно его действие проявляется при рН 5,5-6,5. Глутамат натрия добавляют в пищевые концентраты, в блюда из мяса, рыбы, овощей, бобовых.

Однако потребление глутамата натрия лимитируется. В СССР применение глутамата натрия в производстве консервов и концентратов для детей раннего возраста не допускается. В продуктах длЪ питания подростков до 16 лет суточная доза его не должна превышать 0,5 г; для взрослых разовая доза не более 0,5 г, а суточная - не более 1,5 г.

Интенсификаторы способны также подавлять нежелательные оттещси запахов пищевых продуктов (сульфидный, салистый, травянистый, химический и др.).

Наряду с интенсификаторами известны и ингибиторы вкуса. Так, с помощью ягод некоторых тропических растений можно подавлять кислый вкус, усиливая при этом сладкий (лимон приобретает вкус апельсина).

Новые вкусовые и ароматические вещества. При кулинарной обработке продуктов пищевые вещества подвергаются воздействию высоких температур. При этом происходит комплекс сложных реакций.

В настоящее время в пищевых продуктах идентифицировано свыше 2500 соединений, участвующих в формировании аромата. В конденсатах запаха почти всегда присутствуют кислоты, спирты, сложные эфиры, серосодержащие соединения, амины, альдегиды, кетоны, лактоны, фенолы, углеводороды и другие соединения с широким диапазоном температур кипения (от газов до веществ, кипящих при 300 °С).

Некоторые приправы изменяют вкус или даже теряют его при высоких температурах. Например, соусы, заправленные горчицей, нельзя кипятить, лавровый лист кладут за 10-15 мин до готовности блюда, так как при длительной варке теряются ароматические вещества и появляется горьковатый привкус.

В формировании вкуса сладкого принимает участие не только сахар, добавленный в изделие по рецептуре, но и продукты инверсии сахарозы, обладающие большей сладостью (варка киселей, варенья, запекание яблок, тушение свеклы с уксусом). Можно предположить, что при нагревании крахмалосодержащих продуктов в присутствии кислот происходит частичный кислотный гидролиз крахмала с образованием мальтозы (варка соусов с добавлением кислот). Мальтоза образуется и при ферментативном гидролизе крахмала (брожение дрожжевого теста, варка картофеля).

Карамелизация Сахаров существенно изменяет их вкус (от сладкого до горьковатого).

Большое значение в формировании вкуса и аромата термически обработанных продуктов имеет реакция меланоидинообразования (Майара). Известно, что при взаимодействии редуцирующих са-харов с аммиаком, аминокислотами и белками, содержащими диаминомонокарбоновые кислоты, образуются промежуточные продукты, в том числе различные альдегиды. Среди летучих веществ, которые выделяются при варке пищевых продуктов, почти всегда присутствуют формальдегид, ацетальдегид и альдегиды, образующие при окислении нелетучие кислоты. В сырых продуктах в свободном состоянии они не содержатся.

В присутствии жирных кислот отмечается усиление специфического запаха того или иного продукта. Видимо, продукты окисления жирных кислот при нагреве до высоких температур также участвуют в образовании запаха. Так, при проведении сравнительных исследований летучих фракций, экстрагируемых из кожи, подкожного жира и обезжиренного мяса цыплят и индеек, обнаружено только количественное различие в них отдельных веществ. По-видимому, вещества, образующиеся при нагревании жиров, являются основными компонентами летучей фракции.

При варке мяса цыплят и индеек в присутствии кислорода летучих веществ образуется больше, чем при нагревании этого мяса в атмосфере азота.

Исследования летучих фракций ароматических веществ, образующихся при нагревании бараньего жира и обезжиренного бараньего мяса, показали, что специфический запах баранины обусловлен в первую очередь изменениями, происходящими в бараньем жире. Аромат усиливается при нагревании жира в присутствии воды. Среди летучих соединений бараньего жира свободных жирных кислот не обнаружено.

Тепловая обработка многих продуктов вызывает не только денатурацию белков, но нередко является причиной их деструкции вследствие длительного температурного воздействия. Образующиеся при деструкции продукты участвуют в формировании вкуса и аромата кулинарной продукции. Так, наблюдается отщепление сероводорода при нагревании белков, в состав которых входят серосодержащие аминокислоты, а также образование других сернистых соединений - меркаптанов (при тепловой обработке мяса, яиц, картофеля, капусты, брюквы) и дисульфидов (при варке капусты, картофеля, брюквы). Типичный аромат молока обусловлен наличием диметилсульфида.

Фосфористый водород (фосфин) образуется в результате расщепления фосфатидов и фосфопротеидов при термической обработке продуктов (при нагревании мяса, яиц, молока, картофеля, капусты).

Как серосодержащие, так и фосфорсодержащие соединения принимают участие в образовании запахов.

Изучение качественного и количественного состава экстрактивных веществ некоторых продуктов показало, что эти соединения в неизмененном или измененном вследствие тепловой обработки виде участвуют в образовании запаха и вкуса мясного бульона, вареного мяса и других продуктов.

При жарке интенсивность запаха и вкуса продуктов активизируется высокими температурами. При температурах выше 100 °С протекают не только перечисленные выше процессы, но и образуются продукты пиролиза белков и углеводов, также обусловливающие вкус и запах жареных продуктов.

Идентификация хроматограмм пищевых продуктов и знание процессов, приводящих к образованию вкуса и аромата последних, позволили подобрать такие смеси веществ, которые при нагревании имитируют некоторые запахи. Например, для получения запаха куриного бульона составляют смесь из цистеина, аланина, глутаминовой кислоты, глицина, глюкозы, арабинозы, метилового эфира арахидоновой кислоты и воды. В этой смеси есть все исходные компоненты, необходимые для перечисленных выше реакций.

Изучение вкусовых и ароматических композиций традиционных пищевых продуктов и кулинарной продукции с помощью современных методов исследования позволило создать искусственные продукты питания, например: искусственную зернистую икру, крупы, макаронные изделия, жареный картофель, мясопродукты, имитирующие изделия из рубленого мяса. Эти продукты получены на основе белков, которые практически лишены запаха и вкуса, других веществ природного происхождения и вкусовых и ароматических добавок. Состав, структура, внешний вид и комплекс свойств продуктов созданы искусственным путем.

Познание сущности процессов ароматообразования позволяет вести целенаправленно технологическую обработку продуктов и придавать или усиливать желаемые вкусовые качества.

Технологические принципы производства кулинарной продукции

Определенные возможности количественной характеристики технологических процессов производства кулинарной продукции предоставляют технологические принципы производства.

Принцип наилучшего использования сырья предусматривает наилучшее использование пищевых достоинств сырья. Оценить соблюдение принципа можно качественно и количественно.

Качественная оценка выполнения этого принципа определяется степенью комплексности переработки сырья как отношение числа наименований полезно используемых компонентов к их общему количеству в данном продукте.

Качественное несоблюдение принципа имеет место, например, при неоправданной продолжительности тепловой обработки продуктов или превышении необходимого температурного режима, что влечет за собой полное разрушение тех или иных витаминов.

Количественно соблюдение принципа оценивают по уровню использования полезных компонентов сырья, который определяют как отношение части полезно используемых компонентов к их общему количеству в данном продукте.

Количественное нарушение принципа имеет место, например, при механической очистке некалиброванного картофеля, в результате чего количество отходов превышает установленные нормы, в случае неправильного проведения процесса размораживания мяса, что приводит к значительным потерям мясного сока при последующей обработке мяса. Принцип нарушают и в тех случаях, когда на производстве не используют крупяные и овощные отвары, не извлекают жир из костей после варки бульонов, излишне промывают или отжимают квашеную капусту.

Принцип наилучшего использования сырья следует соблюдать на всех стадиях производства и реализации кулинарной продукции. Его соблюдение предусматривает также высокую степень утилизации отходов по назначению.

Комплексность переработки и уровень использования полезных компонентов сырья объективно не могут быть абсолютными. Это объясняется тем, что специфические состав и структура многих продуктов, которые мы можем потреблять в свежем виде, затрудняют полное переваривание и усвоение содержащихся в них полезных компонентов, а при тепловой обработке продуктов наряду с повышением усвояемости одних компонентов происходит разрушение в той или иной степени других компонентов.

Материальный баланс сырья, получаемых из него полуфабрикатов и готовой продукции в целом и по отдельным компонентам позволяет оценить соответствие вида и качества сырья способам его переработки и эффективность технологии той или иной продукции.

Важное значение в соблюдении принципа имеют вопросы умелого комбинирования сырья с целью получения продукции с высокими пищевыми и вкусовыми достоинствами.

Принцип сокращения времени процесса. Известные в кулинарной практике способы интенсификации технологических процессов, как правило, одновременно способствуют повышению качества готовой продукции. Они включают:

предварительное разрыхление структуры продуктов посредством замачивания сухих продуктов (грибов, бобовых, некоторых круп, сухофруктов и др.), механического воздействия (отбивание и рыхление мяса, измельчение его на мясорубке), химического и биохимического воздействия (маринование и ферментативная обработка мяса) и др.;

интенсификацию теплообмена посредством увеличения поверхности взаимодействующих фаз (измельчение продуктов, нарезка их таким образом, чтобы площадь соприкосновения с греющей поверхностью была наибольшей), повышения температуры теплоносителя;

использование новых электрофизических методов тепловой обработки продуктов (ИК-нагрев, СВЧ-нагрев).

Увеличение времени тепловой обработки продуктов может привести* к излишней потере влаги, сочности и вкуса готовой продукции, а также ее пищевой ценности вследствие дополнительного разрушения пищевых компонентов.

Представляется целесообразным уменьшение продолжительности тушения капусты и свеклы посредством интенсификации процесса меланоидинообразования.

Принцип наилучшего использования оборудования предусматривает максимальный выход продукции с единицы рабочего пространства машин и аппаратов.

В соответствии с этим принципом машины и аппараты при необходимой производительности должны иметь невысокую энергоемкость, устойчивый режим, быть удобными и безопасными в эксплуатации, ремонтопригодными. В условиях индустриализации отрасли желательна возможность автоматического управления.

Принцип с успехом используется, например, на узкоспециализированных предприятиях (пончиковые, пирожковые и др.), где установлено соответствующее оборудование (пончиковые автоматы и др.).

Принцип наилучшего использования энергии предусматривает разумное сокращение энергоемкости кулинарной продукции.

Энергоемкость (электроемкость, теплоемкость) продукции можно охарактеризовать с помощью коэффициента энергоемкости, который определяется как отношение стоимости потребленной в производстве продукции энергии к стоимости продукции.

Энергоемкость кулинарной продукции можно сократить путем использования современного оборудования с невысокой энергоемкостью, разумного сокращения энергоемких способов обработки продуктов, строгого соблюдения технологической дисциплины, например соблюдения температурных режимов обработки продуктов, своевременного отключения энергии с учетом термостойких свойств (возможностей) оборудования и др.

При целостной оценке технологического процесса следует учитывать также расход воды, трудовые и прочие затраты на производство той или иной продукции.

2. Производство полуфабрикатов

2.1 Полуфабрикаты из овощей, плодов и грибов

Полуфабрикаты из овощей и плодов представляют собой подготовленные к тепловой кулинарной обработке продукты, предварительно прошедшие механическую и гидромеханическую кулинарную обработку (в некоторых случаях и тепловую, и химическую).

Некоторые полуфабрикаты из овощей вырабатывают централизованно на крупных предприятиях общественного питания или в специализированных цехах плодоовощных баз для снабжения этими полуфабрикатами более мелких предприятий (доготовочных).

Кроме того, в общественном питании используют овощные полуфабрикаты, выпускаемые пищевой промышленностью.

Характеристика сырья

Для приготовления кулинарных изделий на предприятиях общественного питания используют практически все известные овощи, плоды и ягоды, которые поступают чаще всего в свежем виде, а также сушеными, маринованными, солеными, законсервированными в банках и замороженными. Овощи и плоды, используемые для производства полуфабрикатов, должны соответствовать по качеству требованиям действующих ГОСТов, ОСТов и РСТ.

При механической кулинарной обработке овощей и плодов изменяются их пищевая ценность, цвет, а иногда вкус, аромат и консистенция. Степень тех или иных изменений зависит от технологических свойств сырья и применяемых режимов обработки.

Технологические свойства овощей и плодов определяются в основном составом и содержанием в них пищевых веществ (белков, жиров, углеводов, минеральных веществ и др.) и особенностями строения их тканей.

Строение тканей овощей и плодов

Ткань (мякоть) овощей и плодов состоит из тонкостенных клеток, разрастающихся примерно одинаково во всех направлениях. Такую ткань называют паренхимной. Содержимое отдельных клеток представляет собой полужидкую массу - цитоплазму, в которую погружены различные клеточные элементы (органел-лы) - вакуоли, ядра, пластиды и др. (рис. 15).

Вакуоль расположена в центре клетки и является самым крупным элементом. Она представляет собой своеобразный пузырек, заполненный жидкостью, в которой растворены питательные вещества, - клеточным соком. Тонкий слой цитоплазмы с другими органеллами занимает в клетке пристенное положение.

Все органеллы клетки отделены от цитоплазмы мембран а-м и. Вакуоли окружены простой (элементарной) мембраной, называемой тонопластом. Поверхность ядер, пластид и другие цитоплазматических структур покрыта двойной мембраной, состоящей из двух рядов простых мембран с промежутком между ними, заполненным жидкостью типа сыворотки.

Цитоплазма на границе с клеточной оболочкой покрыта, как и вакуоль, простой мембраной, называемой плазмалеммой. Внешнюю границу плазмалеммы можно увидеть при рассмотрении под микроскопом препаратов растительной ткани, обработанных концентрированным раствором поваренной соли. Вследствие разницы между осмотическим давлением внутри клетки и вне ее происходит переход воды из клетки в окружающую среду, вызывающий плазмолиз - отделение цитоплазмы от клеточной оболочки.

Мембраны регулируют клеточную проницаемость, избирательно задерживая либо пропуская молекулы и ионы тех или иных веществ в клетку и за ее пределы. Мембраны препятствуют также смешиванию содержимого двух соседних органелл. Отдельные вещества переходят из одних органелл в другие лишь в строго определенных количествах, необходимых для протекания физиологических процессов в тканях.

Каждая клетка покрыта оболочкой, представляющей собой первичную клеточную стенку (см. с. 80). В отличие от мембран она характеризуется полной проницаемостью. Оболочки каждых двух соседних клеток скрепляются с помощью так называемых срединных пластинок, образуя остов паренхимной ткани. Поэтому часто клеточными стенками называют не только оболочки клеток, но и оболочки клеток вместе со срединными пластинками.

Контакт между содержимым клеток осуществляется через плазмодесмы, которые представляют собой тонкие протоплазма-тические тяжи, проходящие через оболочки.

Поверхность отдельных экземпляров овощей и плодов покрыта покровной тканью - эпидермисом (плоды, наземные овощи) или перидермой (картофель, свекла, репа). Покровные ткани обычно имеют пониженную пищевую ценность, и при переработке большинства овощей и некоторых плодов их удаляют.

Свежие овощи и плоды отличаются значительным содержанием воды (от 75 до 95%), поэтому все структурные элементы их паренхимной ткани в той или иной степени гидратированы. Способность тканей овощей и плодов сохранять форму и определенную структуру при относительно высоком содержании воды объясняется присутствием в них белков и углеводов, способных удерживать значительное количество влаги. Это обеспечивает достаточно высокое тургорное давление в тканях. Тургорное давление может снижаться, например, при увядании или подсыхании овощей и плодов или возрастать, что наблюдается при погружении их в воду. Это свойство овощей и плодов учитывают при их кулинарной переработке. Так, картофель и корнеплоды с ослабленным тургором перед механической очисткой замачивают с целью сокращения времени обработки и снижения количества отходов.

Пищевая ценность овощей и плодов

В состав сухого остатка овощей и плодов входят в основном углеводы, а также азотистые и минеральные вещества, органические кислоты, витамины, пигменты, полифенольные соединения, ферменты и др.

Из углеводов в овощах и плодах содержатся моносахариды (глюкоза, фруктоза, галактоза, рамноза и др.), дисахариды (сахароза, мальтоза) и полисахариды (крахмал, клетчатка, гемицеллюлозы пектиновые вещества).

Общее содержание Сахаров в овощах колеблется от 1,5% (на сырую массу съедобной части) в картофеле до 9% в арбузах, дынях, свекле, луке репчатом. Достаточно много их содержится в моркови (6%) и белых кореньях (петрушка - 9,4%, пастернак - 6,5, сельдерей - 5,5%); в капустных овощах Сахаров более 4%. В плодах и ягодах общее содержание Сахаров колеблется от 3 - 4% в лимонах и клюкве до 16-19% в винограде и бананах.

Соотношение различных Сахаров в отдельных видах овощей и плодов неодинаково. Например, в картофеле они представлены в основном глюкозой и сахарозой, фруктозы в нем очень мало; в луке репчатом и моркови - сахарозой и в меньшей степени глюкозой и фруктозой. В белокочанной капусте содержатся в основном глюкоза и фруктоза, сахарозы в ней в 10 раз меньше, чем моносахаров. В яблоках, грушах сахара представлены фруктозой и в меньшей степени глюкозой и сахарозой, в винограде и вишне - глюкозой и фруктозой. В абрикосах, персиках, апельсинах, мандаринах содержится больше сахарозы, чем моносахаров. В лимоиах все три вида Сахаров присутствуют в равных количествах.

Крахмал в относительно больших количествах содержится в картофеле - в среднем 16% на сырую массу съедобной части картофеля продовольственного. Из других овощей сравнительно высоким содержанием крахмала отличаются зеленый горошек (6,8%), бобы овощные (6%), пастернак (4%), фасоль стручковая (2%). В остальных овощах содержание его не превышает десятых долей процента. У большинства плодов и ягод крахмал отсутствует; в небольших количествах он содержится лишь в бананах, яблоках, грушах и айве.

Содержание клетчатки в овощах и плодах колеблется от 0,3 до 1,4% (на сырую массу съедобной части). Повышенным содержанием ее отличаются пастернак (2,4%), хрен (2,8%), укроп (3,5%), а также некоторые ягоды - малина (5,1%), облепиха (4,7%).

Гемицеллюлоз в овощах и плодах содержится значительно меньше, чем клетчатки (от 0,1 до 0,7%). Клетчатка и гемицеллюлозы в большей степени концентрируются в покровных тканях овощей и плодов и в меньшей - в мякоти.

Количество пектиновых веществ в овощах и плодах колеблется от десятых долей процента до 1,1% (на сырую массу съедобной части). Пектиновые вещества в растительных продуктах представлены двумя формами: нерастворимой в холодной воде - протопектином и растворимой - пектином. Основную массу пектиновых веществ составляет протопектин (около 75%).

Молекула протопектина представляет собой гетерополимер, имеющий сложную разветвленную структуру (рис. 16). Главная цепь этого полимера состоит из остатков молекул галактуроновой и полигалактуроновой кислот, частично этерифицированных метиловым спиртом, и рамнозы (главную цепь протопектина называют рамногалактуронан). К главной цепи ковалентными связями присоединены боковые цепи гемицеллюлоз - галактанов и арабинанов. Ниже представлен участок цепи полигалактуроновой кислоты, в которой часть карбоксильных групп этерифицирована метиловым спиртом.

Количество галактуроновых и полигалактуроновых кислот и других составляющих молекулы протопектина, а также молекулярная масса его пока неизвестны, так как протопектин не удалось выделить из растительных тканей в неизмененном состоянии. При извлечении протопектина различными способами обычно получают продукты его распада, в частности полигалактуроновые кислоты различной степени полимеризации, галактуроновую кислоту, рам-нозу и др.

Молекулы пектина представляют собой цепочки рамногалак-туронана, содержащие от 20 и более остатков галактуроновой кислоты. Пектин обладает желирующими свойствами, которые проявляются тем значительнее, чем больше в его молекуле меток-сильных групп.

Азотистых веществ в овощах относительно немного: количество их не превышает 3% (в пересчете на белок) и только в бобовых (зеленый горошек, фасоль стручковая, бобы и др.) содержание их достигает 4-6%. В плодах и ягодах азотистых веществ содержится меньше, чем в овощах (0,2-1,5%) - Примерно половину азотистых веществ овощей и плодов составляют белки. Кроме белков, овощи и плоды содержат свободные аминокислоты (до 0,5% на сырую массу).

«Количество минеральных веществ (золы) в овощах и плодах составляет в среднем 0,5% и не превышает 1,5% - Минеральные вещества входят в состав овощей и плодов в виде солей органических и неорганических кислот. В основном это калий, натрий, кальций, магний, фосфор и др., а из микроэлементов - железо, медь, марганец и др.

Органические кислоты овощей и плодов представлены яблочной, лимонной, щавелевой, винной, фитиновой, янтарной и другими кислотами. Общее содержание органических кислот в овощах и плодах составляет в среднем 1% на сырую массу. Преобладает, как правило, яблочная кислота. Однако в корнеплодах свеклы преобладающей является щавелевая кислота, в цитрусовых плодах и черной смородине - лимонная, в винограде - винная и яблочная, в персиках и клюкве - яблочная и лимонная кислоты.

Органические кислоты находятся в свободном или связанном состоянии. Количество кислот, связанных с различными катионами, значительно превышает количество свободных.

Овощи и плоды содержат почти все известные в настоящее время витамины, кроме витаминов В)2 и D (кальциферола). К витаминам, источником которых являются главным образом овощи и плоды, относятся: водорастворимые витамины - С, Р, U и фолацин; жирорастворимые - Е, К и каротиноиды (криптоксантин, а-, (3-,3- и укаротины).

Особое значение имеет термолабильный витамин С (аскорбиновая кислота). Содержание его в овощах колеблется от 5 (баклажаны, морковь) до 250 мг (перец красный сладкий) на 100 г. съедобной части продукта. В таких овощах, как картофель, капуста, количество витамина С относительно невелико (20-60 мг на 100 г.), но поскольку эти овощи занимают значительный удельный вес в питании человека, их можно рассматривать в качестве основного источника витамина С. Из плодов витамином С богаты цитрусовые, черная смородина и шиповник (соответственно 38, 200 и 470 мг на 100 г.).

Аскорбиновая кислота в овощах и плодах находится в трех формах - восстановленной, окисленной (дегидроформа) и связанной (аскорбиген). В процессе созревания и хранения овощей и плодов восстановленная форма аскорбиновой кислоты может окисляться с помощью соответствующих ферментов или других окислительных агентов и переходить в дегидроформу. Дегидроаскорбиновая кислота обладает всеми свойствами витамина С, но по сравнению с аскорбиновой кислотой менее устойчива к действию внешних факторов и быстро разрушается. Аскорбиген может подвергаться гидролизу, вследствие чего высвобождается свободная аскорбиновая кислота.

Содержание аскорбиновой кислоты в овощах и плодах в процессе их хранения, как правило, уменьшается. Наибольшие потери аскорбиновой кислоты наблюдаются при хранении картофеля, наименьшие - цитрусовых.

Витамин Р усиливает биологический эффект витамина С, так как способен задерживать окисление его. Р-витаминной активностью обладают многие вещества фенольной природы (некоторые катехины, антоцианы) и фенолгликозиды (рутин, гесперидин и на-рингин). Средняя суточная потребность в витамине Р (рутине) составляет 25 мг. Многие овощи и плоды характеризуются достаточно высоким содержанием Р-активных соединений. Например, в яблоках оно достигает 43-45 мг на 100 г.

Наиболее богатыми источниками витамина U-антиязвенного фактора, представляющего собой метилсульфоновое производное метионина (сокращенное название S-метилметионин, или SMM), являются листья белокочанной капусты (85 мг на 100 г. сухой массы) и побеги спаржи (100-160 мг на 100 г. сухой массы). Этот витамин был найден также в томатах, стеблях сельдерея, но в меньших количествах. Суточная потребность в этом витамине для здорового человека не определена.


Подобные документы

  • Особенности ассортимента блюд из творога. Описание технологических карт по сборнику рецептур и схемы производства продукции. Характеристика сырья. Принцип обработки продуктов. Расчёт химического состава блюд. Анализ сбалансированности пищевых веществ

    курсовая работа [69,8 K], добавлен 24.11.2008

  • Обработка крахмалосодержащих продуктов, их изменение в процессе приготовления кулинарных изделий. Производство полуфабрикатов из рубленного мяса. Ассортимент, требования к качеству. Приготовление супов-пюре из овощей, круп, бобовых и мясных продуктов.

    контрольная работа [408,5 K], добавлен 27.10.2009

  • Характеристика ассортимента соуса белого основного и его производных. Процесс тепловой обработки получения полуфабрикатов. Технология приготовления соусов. Физико-химические изменения пищевых компонентов происходящих при кулинарной обработке продуктов.

    курсовая работа [5,1 M], добавлен 17.02.2015

  • Квалификационная характеристика повара 3-го разряда. Требования к приемке и хранению сырья, поступающего на предприятие. Способы кулинарной обработки пищевых продуктов. Схема механической обработки овощей и грибов и приготовление полуфабрикатов из них.

    отчет по практике [63,9 K], добавлен 25.05.2013

  • Химический состав и калорийность продуктов питания. Технология приготовления блюд киргизской кухни. Хранение пищевых продуктов. Таблица взаимозаменяемости продуктов при приготовлении блюд. Калькуляционные карточки изделий "Куурдак" и "Халва "Ак-Буура"".

    курсовая работа [354,9 K], добавлен 26.01.2013

  • Характеристика основных требований к безопасности пищевых продуктов: консервов, молочных, мучных, зерновых, мясных, рыбных, яичных продуктов. Санитарные и гигиенические требования к кулинарной обработке пищевых продуктов. Болезни пищевого происхождения.

    курсовая работа [193,6 K], добавлен 20.12.2010

  • Технико-технологические карты блюд. Схемы алгоритма производства продукции. Характеристика пищевых продуктов, их технологические свойства. Процессы и изменения, происходящие при обработке пищевых продуктов, расчет их пищевой и энергетической ценности.

    контрольная работа [138,9 K], добавлен 02.11.2012

  • Общая характеристика рассольников, их виды. Подготовка продуктов, сырья и полуфабрикатов. Технология приготовления блюд по ассортименту (рецептура, требования к качеству). Условия сроки хранения и реализации. Варка как способ тепловой обработки.

    курсовая работа [58,2 K], добавлен 16.01.2014

  • Проблемы безопасности пищевых продуктов. Модификация, денатурализация продуктов питания. Нитраты в сырье для пищевых продуктов. Характеристика токсичных элементов в сырье и готовых продуктах. Требования к санитарному состоянию сырья и пищевых производств.

    курсовая работа [87,0 K], добавлен 17.10.2014

  • Пищевая ценность продуктов, используемых для приготовления блюд и кулинарных изделий украинской кухни. Ассортимент и рецептура блюд, особенности приготовления, оформления и подачи. Методы и процессы технологической обработки продуктов, контроль качества.

    курсовая работа [382,7 K], добавлен 06.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.