Валовий дохід від різних варіантів здійснення виробничої діяльності

Отримання вибіркових даних. Розрахунок похідних показників. Групування даних та розрахунок описової статистики і перевірка однорідності вибіркової сукупності. Поширення вибіркових результатів на генеральну сукупність. Оцінка достатності обсягу вибірки.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык украинский
Дата добавления 13.12.2010
Размер файла 695,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ АВТОМОБІЛЬНО-ДОРОЖНІЙ УНІВЕРСИТЕТ

Кафедра обліку і аудиту

К У Р С О В А Р О Б О Т А

З ДИСЦИПЛІНИ «СТАТИСТИКА»

Виконав: студент гр. ЕА - 22

Дабарська Анна

Залікова книжка № 044031

Перевірила: Голеско I.О.

Харків - 2009

ЗМІСТ

ВСТУП

1. План статистичного дослідження

1.1 Мета і задачі дослідження

1.2 Об'єкт і предмет дослідження. Економічна сутність показників, що вивчаються

1.3 Методи дослідження

2. Збір і систематизація первинних даних

2.1 Отримання вибіркових даних. Розрахунок похідних показників

2.2 Групування даних. Розрахунок описової статистики і перевірка однорідності вибіркової сукупності

2.2.1 Групування з використанням рівних інтервалів

2.2.2 Групування з використанням нерівновеликих інтервалів

2.2.3 Розрахунок узагальнюючих характеристик і перевірка однорідності вибіркової сукупності

2.3 Поширення вибіркових результатів на генеральну сукупність. Оцінка достатності обсягу вибірки

2.4. Аналіз закономірностей розподілу досліджуваних показників

3. ПАРНИЙ КОРЕЛЯЦІЙНО-РЕГРЕСІЙНИЙ АНАЛІЗ ЗАЛЕЖНОСТЕЙ

3.1 Кореляційний аналіз парних зв'язків

3.2 Регресійний аналіз парного зв'язку

3.2.1 Вибір рівняння регресії між двома ознаками

3.2.2 Оцінка істотності параметрів регресії і рівняння зв'язку

Висновок

Список використаної літератури

ВСТУП

Курс ”Статистика” охоплює методологічні основи статистики, системи соціально - економічних показників, які відображають рівень забезпеченості і співвідношення ресурсів суспільного виробництва, їх використання, результати господарювання, життєвий рівень населення; методи вивчення об'єктивно існуючих статистичних закономірностей у формі розподілу сукупностей, взаємозв'язків, тенденцій розвитку.

Статистика як наука покликана відображати реалії суспільного життя, його проблеми, успіхи і невдачі. Оволодіння методами статистичного вимірювання й аналізу складних суспільних явищ - невід'ємний елемент підготовки висококваліфікованих економістів. Надмірна централізація статистики в минулому сприяла формуванню відомчої монополії на збір і обробку інформації, позбавляла статистичні органи аналізу та контролю.

Недосконала методологія та прямі приписки зменшували вірогідність офіційних статистичних даних. Низький рівень статистичної роботи не відповідав вимогам життя; фундаментальні методи дослідження і досвід зарубіжної науки недооцінювались.

Для того щоб підняти статистику до сучасного наукового рівня, задовольнити потреби системи управління та інших соціально - економічних суб'єктів в якісній , різноманітній і своєчасній інформації, потрібна докорінна її перебудова.

Забезпечення вірогідності і надійності статистичної інформації можливе за умови підвищення наукового рівня всієї статистичної методології, наближення її до методології і стандартів світової практики.

Головна особливість статистики як науки - це те, що досліджуючи не окремі чинники, а масові соціально - економічні явища і процеси, виступаючі як безліч окремих чинників, що володіють як індивідуальними, так і загальними ознаками.

Предметом статистики виступають розміри і кількісні співвідношення соціально - економічних явищ, закономірності їх зв'язку і розвитку. Це є другою особливістю статистики як науки

Третя особливість статистики як науки полягає в тому, що вона характеризує структуру суспільних явищ. Структура - це внутрішньо будова масових явищ, тобто внутрішньо будова статистичної множини. Статистика повинна цю структуру знайти, виразити за допомогою статистичних показників.

Зміни в просторі, тобто в статистиці, виявляються за допомогою аналізу структури суспільного явища, а зміни рівня і структури явища досліджуються в часі, тобто в динаміці. Така четверта особливість статистики як науки.

Явища суспільного життя взаємозв'язані і взаємообумовлені : зміна одних явищ зумовлюється інші. Тому виявлення зв'язку є п'ятою особливістю статистики як науки, оскільки пізнання дійсності неможливе без пізнання всіх або принаймні основних взаємозв'язків суспільних явищ.

Статистика - суспільна наука, яка вивчає кількісну сторону якісно певних масових соціально-економічних явищ і процесів, їх структуру і розподіл, розміщення в просторі, рух в часі, виявляючи діючу кількісну залежність, тенденції і закономірності, причому в конкретних умовах місця і часу .

1 План статистичного дослідження

1.1 Мета і задачі дослідження

Метою курсової роботи є самостійне поглиблене вивчення теоретичних основ найважливіших тем дисципліни, придбання практичних навичок, проведення статистичних досліджень економічних об'єктів із застосуванням сучасних засобів обробки початкових даних. Основна мета роботи - це виконання статистичного дослідження для вирішення наступної практичної задачі. Підприємству в процесі розробки бізнес-плану необхідно розрахувати валовий дохід від різних варіантів здійснення виробничої діяльності. Методом прямого розрахунку цього показника через низку обставин використовувати неможливо. Необхідно досліджувати залежність валового доходу підприємства від техніко - економічних показників і розробити його статистичну модель, що дозволяє швидко і якісно передбачати значення валового доходу на підставі визначаючих його величину чинників. Передбачається, що на річний валовий дохід підприємства (Y) можуть робити істотний вплив наступні чинники: середньорічна вартість виробничих фондів (X1); середньорічна чисельність працюючих (X2); фондовіддача (X3); фондоозброєність (X4); продуктивність праці (X5) .

Для аналізу залежності і побудови моделі необхідно, вирішити наступні задачі:

- отримати випадкову 10 - процентну вибірку з генеральної сукупності, представленої 360 підприємствами;

- провести розрахунок по кожному відібраному для дослідження підприємств значень показників фондовіддачі (X3), фондоозброєність (X4) і продуктивності праці (X5) ;

- розрахувати для всіх показників описову статистику, побудувати гістограму і визначити закон розподілу результативної змінної, перевірити вибірку на присутність аномальних спостережень ( при необхідності виключити відповідні підприємства з подальшого дослідження );

- перевірити достатність об'єму вибірки для отримання достовірних результатів ;

- провести парний кореляційно - регресійний аналіз залежності Y = ц (X1), Y = ц (X2), Y = ц (X3), Y = ц (X4), Y = ц (X5), відзначити можливість прогнозу Y на підставі парної залежності, заповнити матрицю парних коефіцієнтів кореляції і вибрати з її використовуванням два - три чинники, що мають якнайменшу кореляцію між собою, але щонайвищою кореляцію з результативним показником Y;

- провести парний кореляційно - регресійний аналіз залежності Y від двох-трьох чинників, відібраних з комплексу тих, що вивчаються( X1, X2, X3, X4, X5);

- розробити рекомендації по використовуванню парний кореляційно - регресійний моделі на практиці (розробити приклад використовування моделі для планування ).

Таким чином, мета статистичного дослідження, як і будь-якого наукового дослідження, - розкриття єства масових явищ і процесів, властивими їм закономірностями. Відмітної особливістю цих закономірностей є те, що вони відносяться не до кожної окремої одиниці сукупності, а до всієї маси одиниць в цілому.

1.2 Об'єкт і предмет дослідження Економічна сутність показників, що вивчаються

Об'єктом статистичного дослідження є статистична сукупність - множина одиниць, що володіють масовістю, однорідністю, певною цілісністю, взаємозалежністю станів окремих одиниць і наявністю варіації. В даній курсовій роботі об'єктом виступає підприємство.

Предметом статистичного дослідження є розміри і кількісні співвідношення соціально-економічних явищ, закономірності їх зв'язку і розвитку. В даній курсовій роботі предметом виступає дохід підприємства.

Генеральна сукупність - уся сукупність реально існуючих статистичних об'єктів, з яких буде витягатися вибіркова сукупність. Тобто генеральною сукупністю виступають 360 підприємств. Вибіркова сукупність - це сукупність одиниць, відібраних з генеральної сукупності за визначеними правилами й ознаками. В даній курсовій роботі вибірковою сукупністю виступають відібрані нами 36 підприємств.

У статистиці особлива увага приділяється вивченню основних виробничих фондів. При цьому головними задачами статистики є визначення обсягу, складу, динаміки і використання основних фондів.

Показники використання основних виробничих фондів :

- річний валовий дохід підприємства;

- середньорічна вартість виробничих фондів;

- середньорічна чисельність працюючих;

- продуктивність праці;

- фондовіддача;

- фондоозброєність;

Основні фонди враховуються, насамперед, у натуральному вираженні. Однак облік основних фондів у натуральному вираженні повинний доповнюватися обліком у грошовій оцінці. Тільки на основі обліку основних виробничих фондів у грошовій оцінці можна визначити їхній загальний обсяг, вивчити структуру, визначити річну суму амортизації, будувати баланс і здійснювати багато важливих економічних розрахунків, пов'язаних з характеристикою використання основних фондів, їх відтворенням. Існує оцінка основних фондів по первісній вартості і відбудовної.

Повна первісна вартість - це вартість основних фондів у момент їхнього придбання.

Повна відбудовна вартість - це сума витрат, необхідних для придбання даного виду основних фондів у сучасних умовах.

Залишкова вартість визначається шляхом відрахування з повної вартості суми зносу основних фондів. Обсяг і склад основних виробничих фондів не залишається незмінним. За рахунок вибуття фізично зношених і морально застарілих основних фондів їхній обсяг зменшується. Зменшується він також за рахунок відрахувань в амортизаційний фонд і втрати, яка зазнається через інші причини.

Таким чином, середньорічна вартість основних виробничих фондів складає суму вартості фондів на початок року за винятком усіх відрахувань і витрат на відновлення і ремонт.

Поліпшення використання основних фондів є одним з найважливіших факторів ефективності виробництва. Поліпшення використання основних фондів означає додатковий випуск продукції. Тому основним показником використання основних виробничих фондів є показник випуску продукції на кожну одиницю вартості основних фондів, - фондовіддача. Тісно з ним зв'язаний і інший показник, що визначається як відношення середньорічної вартості основних виробничих фондів до середньорічної чисельності робітників, - фондоозброєність. Праця є основним чинником виробництва. Отже, статистичне дослідження трудових ресурсів і їхнє використання украй важливе при аналізі результатів діяльності окремих чи підприємств їхніх сукупностей.

Чисельність працівників підприємства визначається на визначені дати і як середня чисельність ( облікова чи явочна) за визначені періоди.

Середньоспискове число працівників визначають шляхом розподілу суми облікового числа за всі дні досліджуваного періоду на календарне число днів даного періоду. Середньоявочне число працівників визначається шляхом розподілу суми людино-днів на число днів роботи підприємства в даному періоді.

Найважливішим показником при вивченні статистикою як наукою виробництва є продуктивність праці, динаміка факторів, що визначають її ріст, шляхи її підвищення. Продуктивність праці визначається кількістю продукції, створюваної в одиницю часу, або витратами часу на виробництво одиниці продукції. Економічні дослідження звичайно зв'язані з вивченням великої кількості об'єктів, що утворюють генеральну сукупність тому як економісти будемо використовувати вибірковий метод. Річний валовий дохід підприємства характеризує кінцевий річний результат діяльності підприємства і є різницею між валовою виручкою - повною сумою грошових надходжень від реалізації товарної продукції, робіт, послуг і матеріальних цінностей - і всіма витратами на виробництво і реалізацію продукції. Продуктивність праці - продуктивність виробничої діяльності людей; вимірюється кількістю продукції, проведеної працівником у сфері матеріального виробництва за одиницю робочого часу, або кількістю часу, яке затрачує на виробництво одиниці продукції.

1.3 Методи дослідження

Для вивчення предмету статистики розроблені і застосовуються специфічні прийоми, способи і методи, що направлені на вивчення кількісних закономірностей, що виявляються в структурі, динаміці, взаємозв'язках соціально-економічних явищ.

Статистичне дослідження складається з трьох етапів:

1) статистичне спостереження;

2)первісна обробка, зведення, угрупування результатів спостереження;

3)аналіз отриманої інформації.

На першому етапі застосовують метод масового спостереження. Вимога масовості пояснюється тим, що статистичні закономірності виявляються тільки в достатньо великому масиві даних завдяки дії закону великих чисел: в узагальнених статистичних показниках, розрахованих на основі масових спостережень, взаємо погашаються слідства, породжені випадковими причинами, і залишаються слідства, обумовлені загальними для всіх чинників причинами. Друга стадія полягає в тому, що зібрані факти класифікуються, групуються по певних ознаках, підраховуються певні показники, проектуються і заповнюються таблиці. Інформація на цій стадії обробляється методом статистичних угрупувань. На третьому етапі проводиться аналіз статистичної інформації на основі узагальнених статистичних показників: абсолютних, відносних і середніх величин, індексів і ін.

2 Збір і систематизація первинних даних

2.1 Отримання вибіркових даних. Розрахунок похідних показників

Економічні дослідження звичайно були пов'язані з вивченням великої кількості об'єктів, утворюючих генеральну сукупність, тому економіст повинен уміти використовувати в практичній діяльності вибірковий метод.

Генеральна сукупність, що вивчається в курсовій роботі, має обсяг N, рівний 360.

Репрезентативну вибірку можна отримати декількома способами. Перш за все потрібно розрізняти індивідуальний і серійний відбори. У свою чергу вони можуть бути організовані як власно-випадковий, механічний і типовий відбір. Часто ці способи відбору поєднуються в цілях досягнення більш високої репрезентативності.

Початкові дані для вирішення поставленої задачі одержуємо з генеральної сукупності, представленої 360 підприємствами. По величині результативного показника (Y), що вивчається, вона була розділена на 10 типових груп (таблиця 1).

Таблиця 2.1 - Структура генеральної і вибіркової сукупностей

Типові групи

Генеральна сукупність

Вибіркова сукупність

обсяг, N

частка, %

обсяг, N

частка, %

I

10

2,78

1

2,78

II

20

5,56

2

5,56

III

40

11,11

4

11,11

IV

50

13,89

5

13,89

V

60

16,67

6

16,67

VI

60

16,67

6

16,67

VII

50

13,89

5

13,89

VIII

40

11,11

4

11,11

IX

20

5,56

2

5,56

X

10

2,78

1

2,78

Разом

360

100,0

36

100,0

Через неможливість вивчення всіх об'єктів генеральної сукупності проведемо вивчення цікавлячого нас явища з використанням вибіркового методу. При цьому вибірка повинна мати ту ж структуру, що і генеральна сукупність.

Для формування репрезентативної вибірки необхідний механізм випадкового добору об'єктів з генеральної сукупності. У курсовій роботі в основу цього механізму покладені передостання й остання цифри номера залікової книжки(4та 6).

Відбір вихідних даних проводимо таким чином: по передостанній цифрі залікової книжки встановлюємо номер першого об'єкту, що вивчається, в кожній типовій групі, а по останній цифрі - періодичність відбору об'єктів в цій групі. Відбір здійснюємо пропорційно розмірам типових груп в генеральній сукупності. Вибіркова сукупність повинна складатися з 36 підприємств (n = 36).

Таблиця 2.2 - Вибіркова сукупність (варіант 46)

Група

Номери об'єктів в групі

Кількість об'єктів в групі

I

3

1

II

3,4,

2

III

3,4,5,6

4

IV

3,4,5,6,7

5

V

3,4,5,6,7,8

6

VI

3,4,5,6,7,8

6

VII

3,4,5,6,7

5

VIII

3,4,5,6

4

IX

3,4

2

X

3

1

Разом

36

По кожному обраному підприємству вибрали три показники, значення яких відображено в таблиці вихідних даних (табл. 3). Потім на підставі цих первинних показників розрахуємо похідні показники, такі як: фондовіддача (Хi3,), фондоозброєність (Хi4) і продуктивність праці (Хi5). Їх розраховуємо для кожного підприємства таким чином:

- фондовіддача: Хi3 = Y/Хi1, грн./грн.;

- фондоозброєність: Хi4 = Х1i2, тис. грн./чол.;

- продуктивність праці: Хi5 = Y/Хi2, тис. грн./чол.

Значення змінних Хi3, Хi4, і Хi5 розрахували до 3 цифри після десяткової коми. Результати розрахунків приводимо в таблиці 1.3.

Таблиця 2.3 - Вихідні дані до статистичного дослідження

Порядковий номер

Значення змінних

групи

Підприємства в групі

Спостереження, і

Yi

Xi1

Хi2

Xi3

Xi4

Xi5

I

3

1

994

831

407

1,196

2,041

2,442

II

3

2

1688

1187

554

1,422

2,142

3,046

4

3

1736

1479

528

1,173

2,801

3,287

III

3

4

2248

1848

753

1,216

2,454

2,985

4

5

2325

1867

705

1,245

2,648

3,297

5

6

2614

1916

698

1,312

2,744

3,601

6

7

2651

1890

764

1,402

2,473

3,469

IV

3

8

3780

2502

948

1,510

2,639

3,987

4

9

3840

2541

961

1,511

2,644

3,995

5

10

3878

2507

969

1,546

2,587

4,002

6

11

3905

2559

999

1,525

2,561

3,908

7

12

3980

2632

990

1,512

2,658

4,020

V

3

13

4835

3231

1184

1,496

2,728

4,083

4

14

4865

2847

1159

1,708

2,456

4,197

5

15

4819

3176

1066

1,517

2,979

4,520

6

16

4884

3374

1230

1,447

2,743

4,970

7

17

4911

3142

1187

1,563

2,647

4,137

8

18

4962

3175

1198

1,562

2,650

4,141

VI

3

19

5766

3802

1369

1,516

2,777

4,211

4

20

5837

3835

1379

1,522

2,781

4,232

5

21

5849

3890

1407

1,503

2,764

4,157

6

22

5858

3946

1415

1,484

2,788

4,139

7

23

5963

4045

1447

1,474

2,795

4,120

8

24

5999

3968

1422

1,511

2,790

4,218

VII

3

25

6736

4702

1568

1,432

2,998

4,295

4

26

6820

4372

1585

1,559

2,758

4,302

5

27

6860

4498

1594

1,525

2,821

4,303

6

28

6894

4602

1627

1,498

2,828

4,237

7

29

6940

4550

1611

1,525

2,824

4,307

VIII

3

30

7794

5104

1790

1,527

2,851

4,354

4

31

7784

5097

1787

1,527

2,852

4,355

5

32

7975

5015

1828

1,590

2,743

4,362

6

33

8050

5168

1814

1,557

2,848

4,437

IX

3

34

8895

5953

2054

1,494

2,898

4,330

4

35

9100

5950

2063

1,529

2,884

4,411

X

3

36

9948

8554

2507

1,162

3,412

3,968

Сума значень

191883

129755

46567

52,814

98,02

143,85

Середнє значення

5330,83

3604,306

1293,528

1,467

2,723

3,996

2.2 Групування даних
Розрахунок описової статистики і перевірка однорідності вибіркової сукупності
Групування вихідних даних проводиться з метою аналізу структури і закономірностей розподілу досліджуваних показників. У відповідних дослідженнях групування виконують для кожного досліджуваного показника. У курсовій роботі його слід виконати тільки для результативного показника Y, але різними способами.
Якщо варіація ознаки виявляється в порівняно вузьких межах і розподіл носить більш менш рівномірний характер, то будують угрупування з рівними інтервалами.
Нерівні інтервали застосовуються в статистиці, коли значення ознаки варіюють нерівномірно і в значних розмірах, що характерне для більшості соціально - економічних явищ, особливо при аналізі макроекономічних показників.
2.2.1 Групування з використанням рівних інтервалів
Групування з рівними інтервалами доцільні в тих випадках, коли варіація виявляється в порівняно вузьких інтервалах і розподіл одиниць сукупності по даній ознаці є практично рівномірною. Оптимальну кількість груп K з рівними інтервалами визначимо по формулі Стерджесса:
,
K=1+3,322*lg36=7
де n - кількість спостережень (обсяг вибірки); n=36;
lg n - десятковий логарифм числа n.
Отримане значення К округляємо до цілого у велику сторону. Потім розраховуємо ширину групувального інтервалу h:
,
де max - максимальне значення показника, що вивчається, у вибірці;Ymax=9948
min - мінімальне значення показника, що вивчається, у вибірці.Ymin=994
Значення h також округляємо до цілого у велику сторону.
h= =1279
Після цього можемо встановити межі групувальних інтервалів:
· нижня межа першого групувального інтервалу
a1=Ymin;
a1=994;
· верхня межа першого групувального інтервалу
b1=a1+h;
b=969+1279=2273;
Межі наступних інтервалів встановлюємо так: нижня межа чергового інтервалу приймається рівній верхній межі попереднього інтервалу, а верхня межа дорівнює нижній плюс ширина групувального інтервалу. В результаті весь діапазон зміни значень змінної розбивається на 7 рівних по величині інтервалів.
Одночасно зі встановленням меж групувальних інтервалів задаємо умови віднесення спостережень на інтервал. Їх задаємо у вигляді подвійної нерівності:
ak Y bk, k=1,2,3, ..., K.
Відповідно до цієї умови на інтервал з номером k відносимо ті значення досліджуваної ознаки, які більше або рівні нижньої границі і менше верхньої границі.
Далі розподілимо одиниці вибіркової сукупності (підприємства) по інтервалах у залежності від величини результативної ознаки.
Таблиця 2.4 - Групування підприємств по величині валового доходу, тис. грн.

Номер інтервалу,

k

Межі інтерва-лів

Частота

fk

Кумулятивна частота,

Частка,

wk=fk/n

Кумулятивна

частка,

1

994-2273

4

4

4/36=0,111

0,111

2

2273-3552

3

4+3=7

3/36=0,083

0,111+0,083=0,194

3

3552-4831

5

7+5=12

5/36=0,138

0,194+0,138=0,332

4

4831-6110

12

12+12=24

12/36=0,333

0,332+0,333=0,665

5

6110-7389

5

24+5=29

5/36=0,138

0,665+0,138=0,803

6

7389-8668

4

29+4=33

4/36=0,111

0,803+0,111=0,914

7

8668-9948

3

33+3=36

3/36=0,083

0,914+0,083=0,997

Разом

-

36

-

1

-

Після рознесення даних до інтервалів, у табл. 4 підраховуємо частоту попадання спостережень до інтервалу(fk),розраховуємо частки(wk), кумулятивні частоти(Sf) та частки(Sw).

2.2.2 Групування з використанням нерівновеликих інтервалів

Групування з нерівновеликими інтервалами застосовуються для опису статистичних даних розподілу, що мають явну асиметрію, частот і часток. Ширину і межі цих інтервалів встановлюють на основі логічного аналізу попередніх відомостей про якісні і кількісні характеристики досліджуваного явища.

У курсовій роботі в якості одного з можливих рішень задачі групування підприємств за розмірами валового доходу використовуємо досить просту формалізовану процедуру розділення підприємств на групи.

Ця процедура виділення груп об'єктів з нерівними інтервалами досліджуваної ознаки така. Необхідно ранжирувати значення ознаки. Потім весь інтервал її можливих значень [964; 9964] розділити на два інтервали, відокремлюваних друг від друга середнім значенням ознаки .

Ymin = 994 = 5330.08 Ymax=9948

На першому інтервалі [994; 5330.08] будуть розташовані варіанти досліджуваної ознаки менше середнього значення , на другому [5330.08;9964] - більше, ніж середнє значення .

У випадку асиметричного розподілу точка, що відповідає середньому значенню ознаки =5330.08, не ділитиме інтервал [994;9948] на рівні частини, а буде зміщена до якого-небудь з кінців інтервалу.

Вибираємо з двох інтервалів, розділених значенням середньої величини, інтервал найменшої довжини, для чого порівнюємо по модулю величини =5330.08-994=4336.08 і =9948-5330.081=4617.92.

Довжину найменшого з двох порівнюваних інтервалів поділяємо навпіл і отримане значення додаємо до середнього і вичитаємо з нього.

?Y=4336.08/2=2168.04.

=5330.08-2168.04=3162.04;

=5411+2223,5=7498.12.

Одержуємо координати двох точок (3162.04) і (7498.12), які відзначаємо на числовій осі варіаційного ряду вліво і вправо від середнього значення:

Дрібні Середні Великі

994 3162.04 5330.08 7498.12 9948

В результаті числова вісь, що відповідає ранжированому варіаційному ряду досліджуваної ознаки, розділяється на три інтервали [994;3162,04], [3162.04;7498,12] і [7498,12;9948], довжини яких можуть бути інтерпретовані як величини, що відмежовують дрібні, середні і великі одиниці сукупності.

Після встановлення меж інтервалів розробимо таблицю частот і часток та побудуємо гістограму розподілу підприємств.

Таблиця 2.5 - Групування підприємств за обсягом валового доходу, тис.грн.

Номер інтерва-лу,

K

Межі інтервалів

Частота

fk

Кумулятивна частота,

Частка,

wk=fk/n

Кумулятивна

частка,

1

994-1122

1

1

0,03

0,03

2

1122-8802

32

33

0,89

0,92

3

8802-9948

3

36

0,08

1

Разом

36

1

Рис. 2.1 - Гістограма розподілу значень Y

2.2.3 Розрахунок узагальнюючих характеристик і перевірка однорідності вибіркової сукупності

Наступний етап аналізу сукупності спостережень - розрахунок узагальнюючих характеристик досліджуваної статистичної сукупності. Цей розрахунок можна виконати за не згрупованими або згрупованими даними (на підставі частотної таблиці). Більш точними є результати, отримані з використанням не згрупованих даних.

У курсовій роботі розрахунок зазначених показників описової статистики виконаємо для кожної змінної за не згрупованими даними. Для розрахунку використаємо формули, що приведені в табл. 2.6.

Таблиця 2.6 - Формули для розрахунку узагальнюючих показників вибіркових сукупностей

Узагальнюючі показники

Результативна змінна Y

Факторні змінні Xi

Середнє

Середнє квадратич-не відхилення

Коефіцієнт варіації

Примітка. 1) i-номер спостереження, i =1,2...,n; 36

2) j - номер чинника, j = 1,2,3,4,5

Таблиця 2.7 - Розрахунки узагальнюючих показників вибіркових сукупностей

Узагальнюючі показники

Результативна змінна Y

Факторні змінні X1

Факторні змінні Х2

Факторні змінні Х3

Факторні змінні Х4

Факторні змінні Х5

Середнє

5330.08

3604.306

1293.528

1.467

2.723

3.996

Середнє квадратич-не відхилення

2234.139

1549.276

472.749

0,124

0,228

23,449

Коефіцієнт варіації,

42.984

36.547

35,326

8,453

8.373

586,812

Розрахунок виконується на підставі вихідних даних, приведених у табл. 2.3. Проаналізувавши дані таблиці 2.3, можна зробити такі висновки:

Сукупності показників У, Х1, Х2 та Х5 не однорідні, оскільки їх коефіцієнти варіації більші ніж 33%. А сукупності показників Х3 та Х4 являються однорідними, бо значення їх коефіцієнтів варіації значно менше 33%.Отже, чим менше значення коефіцієнта варіації, тим однорідніші об'єкти досліджуваної сукупності і надійніше рішення, прийняті з використанням описової статистики. Сукупність вважається однорідною, якщо .

Подальший аналіз проводимо по вибірці, що складається з 30 підприємств.

Формуємо нову таблицю вихідних даних.

Таблиця 2.8 - Вихідні дані до статистичного дослідження (зменшена вибірка)

Порядковий номер

Значення змінних

групи

Підприєм-ства в групі

Спостере-ження, і

Yi

Xi1

Хi2

Xi3

Xi4

Xi5

I

4

2248

1848

753

1,216

2,454

2,985

5

2325

1867

705

1,245

2,648

3,298

6

2514

1916

698

1,312

2,745

3,602

7

2651

1890

764

1,403

2,474

3,47

II

8

3780

2502

948

1,511

2,639

3,987

9

3840

2541

961

1,511

2,644

3,996

10

3878

2507

969

1,547

2,587

4,002

11

3905

2559

999

1,526

2,562

3,909

12

3980

2632

990

1,512

2,659

4,02

III

13

4835

3231

1184

1,496

2,729

4,084

14

4865

2847

1159

1,709

2,456

4,198

15

4819

3176

1066

1,517

2,979

4,521

16

4884

3374

1230

1,448

2,743

3,971

17

4911

3142

1187

1,563

2,647

4,137

18

4962

3175

1198

1,563

2,65

4,142

IV

19

5766

3802

1369

1,517

2,777

4,212

20

5837

3835

1379

1,522

2,781

4,233

21

5849

3890

1407

1,504

2,765

4,157

22

5858

3946

1415

1,485

2,789

4,14

23

5963

4045

1447

1,474

2,795

4,121

24

5999

3968

1422

1,512

2,79

4,219

V

25

6736

4702

1568

1,433

2,999

4,296

26

6820

4372

1585

1,56

2,758

4,303

27

6860

4498

1594

1,525

2,822

4,304

28

6894

4602

1627

1,498

2,829

4,237

29

6940

4550

1611

1,525

2,824

4,308

VI

30

7794

5104

1790

1,527

2,851

4,354

31

7784

5097

1787

1,527

2,852

4,356

32

7975

5015

1828

1,59

2,743

4,363

33

8050

5168

1814

1,558

2,849

4,438

Сума значень

159522

105801

38454

44,836

81,84

122,363

Середнє значення

5317,4

3526,7

1281,8

1,495

2,728

4,079

Розраховуємо оптимальну кількість груп К з рівними інтервалами по формулі Стерджесса:
,
K=1+3,322*lg30=6.
Розрахуємо ширину групувального інтервалу h:
h==967.
Таблиця 2.9 - Групування підприємств по величині валового доходу, тис. грн.

Номер інтервалу,

k

Межі інтервалів

Частота,

fk

Кумулятив-на частота,

Частка,

wk=fk/n

Кумулятивна

частка,

1

2248-3215

4

4

0,133

0.133

2

3215-4182

5

9

0,167

0.3

3

4182-5149

6

15

0,201

0.501

4

5149-6116

6

21

0,2

0.701

5

6116-7083

5

26

0,167

0.868

6

7083-8050

4

30

0,133

1

Разом

-

30

-

1

-

Таблиця 2.10 - Розрахунки узагальнюючих показників вибіркових сукупностей

Узагальнюючі показники

Результативна змінна Y

Факторні змінні X1

Факторні змінні Х2

Факторні змінні Х3

Факторні змінні Х4

Факторні змінні Х5

Середнє

5317,4

3526,7

1281,8

1,495

2,728

4,079

Середнє квадратич-не відхилення

1686.758

1043.374

340.578

0.095

0.133

0.334

Коефіцієнт варіації

31.721

29.585

26.57

6.355

4.875

8.188

2.3 Поширення вибіркових результатів на генеральну сукупність. Оцінка достатності обсягу вибірки

Кінцевою метою вибіркового спостереження є характеристика генеральної сукупності. Враховуючи, що на основі вибіркового обстеження не можна точно оцінити досліджуваний параметр генеральної сукупності, знайдемо межі, у яких він знаходиться. Для цього необхідно з імовірністю 0,95 визначити граничну помилку вибіркової середньої результативного показника (середнього доходу підприємств, що входять у вибірку), і довірчі межі середнього доходу всіх підприємств генеральної сукупності:

,

572.624

,

де n - обсяг вибірки;

N - обсяг генеральної сукупності.

Обсяг вибірки повинен бути достатнім для отримання достовірних висновків про явище, що вивчається. У зв'язку з цим в курсовій роботі слід визначити, яким повинен бути обсяг вибірки для проведення дослідження. З цією метою розраховуємо мінімальний обсяг вибірки, необхідний для оцінки генеральної середньої результативного показника з 5-процентною помилкою на рівні довірчої вірогідності 0,95. Розрахунок виконуємо по формулі для безповторної власно-випадкової вибірки:

,

= 102.0345

де t - коефіцієнт довіри, що відповідає рівню довірчої імовірності 0,95 (t=1,96);

- припустима гранична абсолютна величина помилки оцінки генеральної середньої:

265.87

В результаті розрахунків виявилося, що фактичний обсяг вибірки менше мінімального. Визначаємо фактичну величину помилки оцінки генеральної середньої. Для цього формулу, по якій проводили розрахунок мінімального обсягу вибірки, перетворюємо. А потім підставляємо фактичне значення обсягу вибірки, дисперсії ознаки і коефіцієнта довіри і знаходимо відповідне їм значення помилки оцінки генеральної середньої.

=11.332.

2.4 Аналіз закономірностей розподілу досліджуваних показників

З метою найбільш повного опису поводження досліджуваної ознаки в статистичних дослідженнях часто потрібно визначити закон її розподілу. У курсовій роботі зробимо це тільки для результативної перемінної.

В статистиці для опису поведінки випадкових дискретних і безперервних величин використовуються різні закони розподілу. Нормальний закон використовується для опису розподілу випадкових безперервних величин.

Досліджувана результативна змінна є неперервною величиною, тому що обсяг доходу підприємства не може бути представлений кінцевим набором чисел координатної осі. Дохід, теоретично, може приймати будь-яке значення від 0 до нескінченно великого числа, однак на практиці він обмежений через обмеженість ресурсів. Як показала практика, більшість явищ і подій у реальному житті можна звести до нормального закону і його модифікацій, тому саме цьому закону приділяється велика увага в теорії ймовірностей і статистиці. Нормальність розподілу характерна для збалансованих об'єктів, що не мають різких переходів і розходжень. Тому бажано, щоб результативний показник мав розподіл, близький до нормального.

Для перевірки гіпотези про нормальність розподілу результативного показника по даним вибірки будуємо гістограму та полігон розподілу емпіричних значень.

Рис. 2.2 - Гістограма розподілу емпіричних значень

Розраховуємо моду та медіану по даним вибірки за формулами:

,

де - нижня межа модального інтервалу;

- величина модального інтервалу;

- частоти відповідно в попередньому і наступним за модальним інтервалах.

Графічно моду визначають по гістограмі. Для цього виберемо найвищий прямокутник, який і є модальним. Далі праву верхню вершину прямокутника, що передує модальному (частота f-1), з'єднуємо із правою верхньою вершиною модального прямокутника (частота fMо), а ліву верхню вершину цього прямокутника - з лівою верхньою вершиною прямокутника, наступного за модальним (частота fMо+1). З точки перетинання опускаємо перпендикуляр на горизонтальну вісь. Основа перпендикуляра покаже значення моди Мо.

При обчисленні медіани спочатку знаходимо інтервал, що містить медіану. Медіанним є інтервал, накопичена частота якого дорівнює чи перевищує половину всього обсягу сукупності.

,

де - нижня межа медіанного інтервалу;

- ширина медіанного інтервалу;

- накопичена частота інтервалу, передуючого медіанному;

- частота медіанного інтервалу.

Рис. 2.3 Графічне визначення медіани

Графічно медіана визначаємо по кумуляті. Останню ординату кумуляти, рівну сумі всіх частот або часток, ділимо навпіл. З отриманої точки проводимо перпендикуляр до кумуляти. Абсциса точки перетинання і дає значення медіани.

Співвідношенням моди, медіани і середньої арифметичної користаються для розпізнавання симетричності варіації. Необхідною, але недостатньою умовою симетричності є рівність трьох характеристик: =Ме=Mо. У рядах із правосторонньою асиметрією МеМо, з лівосторонньою асиметрією < Ме < Mo. Наші ряди із правосторонньою асиметрією.

Як показники формоутворення застосовуються:

- коефіцієнт асиметрії Пирсона

0,39

(якщо Ка0, то скошеність правобічна, якщо Ка0 - лівостороння; якщо Ка=0, то розподіл симетричний);

Скошеність правобічна, оскільки Ка = 0,438.

- ексцес

(якщо Ех=0, то розподіл близький до нормального, якщо Ех0, розподіл гостровершинний, Ех0 - розподіл низковершинний). Отже, розподіл низковершинний.

Порядок розрахунку теоретичних частот кривої нормального розподілу:

1) визначити середини інтервалів ;

2) знайти нормоване відхилення кожної варіанти результативного показника від його середньої арифметичний: ;

3) по таблиці розподілу функції (додаток Б) визначити її значення;

4) обчислити теоретичні частоти по формулі: ,

5) побудувати і порівняти графіки емпіричних (полігон) і теоретичних частот.

Таблиця 11 - Розрахунок теоретичних частот кривої нормального розподілу

Межі інтервалів

fk

Yk

tk

2248-3215

4

2731,5

-2585,9

-1,53

0,1257

2,16

1,84

3,39

1,57

3215-4182

4

3698,5

-1618,9

-0,96

0,2613

4,49

-0,49

0,24

0,05

4128-5149

6

4638,5

-678,9

-0,4

0,3653

6,28

-0,28

0,08

0,01

5149-6116

6

5632,5

315,1

0,19

0,3894

6,7

-0,7

0,49

0,07

6116-7083

6

6599,5

1282,1

0,76

0,285

13,07

-7,07

49,98

3,82

7083-8050

4

7566,5

2249,1

1,33

0,1669

22,87

-18,87

356,08

15,57

Разом

30

-

-

-

-

55.57

-

-

21.09

Будуємо графік співставлення для порівняння емпіричних та теоретичних частот.

Рис.2.4 Графік теоретичних і емпіричних частот

Сума теоретичних і емпіричних частот повинна бути рівною, але може не збігатися через округлення в розрахунках.

Для перевірки гіпотези про близькість емпіричного і теоретичного розподілів розрахуємо критерій згоди Пирсона і порівняємо його з табличним значенням , яке визначають для рівня значущості і числа ступенів свободи df = k-3 по додатку В. Якщо , то з імовірністю 95% можна стверджувати, що в основі емпіричного розподілу підприємств по величині валового доходу лежить закон нормального розподілу, а розбіжності між теоретичними й емпіричними частотами пояснюються випадковими факторами.

3,09

= 7,81.

Отже, в основі емпіричного розподілу підприємств по величині валового доходу лежить закон нормального розподілу, а розбіжності між теоретичними й емпіричними частотами пояснюються випадковими факторами.

Так як коефіцієнти варіації ? 33% та результативний показник розподіляється згідно з законом нормального розподілу, то можна сказати, що вибіркова сукупність, що вивчається, майже однорідна.

3 ПАРНИЙ КОРЕЛЯЦІЙНО-РЕГРЕСІЙНИЙ АНАЛІЗ ЗАЛЕЖНОСТЕЙ

3.1 Кореляційний аналіз парних зв'язків

Кореляційний аналіз проводиться з метою виявлення наявності зв'язку між результативною і факторної змінними й оцінки його сили й істотності. Якщо факторних змінних декілька (у загальному випадку m), то проводять аналіз залежності результативної змінної Y від кожної факторної перемінної:

, j=1, 2, …, m

Таким чином, нам необхідно провести кореляційний аналіз залежності валового доходу підприємства від середньорічної вартості основних фондів , середньоспискової чисельності працюючих , фондовіддачі , фондоозброєності і від продуктивності праці .

Для виявлення наявності залежності однієї змінної від іншої побудуємо кореляційні поля і розрахуємо коефіцієнти лінійної кореляції . Використовуємо такі формули:

(j=1,2,3,4,5)

де ; ;

Розрахунок середніх для добутків і середніх для квадратів значень досліджуваних змінних наводимо в табл. 3.1.

Таблиця 3.1 - Розрахунок середніх значень квадратів і добутків змінних

Yi2

X12

X22

X32

X42

X52

YiX1

YiX2

YiX3

YiX4

YiX5

1

5053504

3415104

567009

1,479

6,022

8,91

4154304

1692744

2733,568

5516,592

6710,28

2

5405625

3485689

497025

1,55

7,012

10,877

4340775

1639125

2894,625

6156,6

7667,85

3

6320196

3671056

487204

1,721

7,535

12,974

4816824

1754772

3298,368

6900,93

9055,428

4

7027801

3572100

583696

1,968

6,121

12,041

5010390

2025364

3719,353

6558,574

9198,97

5

14288400

6260004

898704

2,283

6,964

15,896

9457560

3583440

5711,58

9975,42

15070,86

6

14745600

6456681

923521

2,283

6,991

15,968

9757440

3690240

5802,24

10152,96

15344,64

7

15038884

6285049

938961

2,393

6,693

16,016

9722146

3757782

5999,266

10032,386

15519,756

8

15249025

6548481

998001

2,329

6,564

15,28

9992895

3901095

5959,03

10004,61

15264,645

9

15840400

6927424

980100

2,286

7,07

16,16

10475360

3940200

6017,76

10582,82

15999,6

10

23377225

10439361

1401856

2,238

7,447

16,679

15621885

5724640

7233,16

13194,715

19746,14

11

23668225

8105409

1343281

2,921

6,032

17,623

13850655

5638535

8314,285

11948,44

20423,27

12

23222761

10086976

1136356

2,301

8,874

20,439

15305144

5137054

7310,423

14355,801

21786,699

13

23853456

11383876

1512900

2,097

7,524

15,769

16478616

6007320

7072,032

13396,812

19394,364

14

24117921

9872164

1408969

2,443

7,007

17,115

15430362

5829357

7675,893

12999,417

20316,807

15

24621444

10080625

1435204

2,443

7,023

17,156

15754350

5944476

7755,606

13149,3

20552,604

16

33246756

14455204

1874161

2,301

7,712

17,741

21922332

7893654

8747,022

16012,182

24286,392

17

34070569

14707225

1901641

2,316

7,734

17,918

22384895

8049223

8883,914

16232,697

24708,021

18

34210801

15132100

1979649

2,262

7,645

17,281

22752610

8229543

8796,896

16172,485

24314,293

19

34316164

15570916

2002225

2,205

7,779

17,14

23115668

8289070

8699,13

16337,962

24252,12

20

35557369

16362025

2093809

2,173

7,812

16,983

24120335

8628461

8789,462

16666,585

24573,523

21

35988001

15745024

2022084

2,286

7,784

17,8

23804032

8530578

9070,488

16737,21

25309,781

22

45373696

22108804

2458624

2,053

8,994

18,456

31672672

10562048

9652,688

20201,264

28937,856

23

46512400

19114384

2512225

2,434

7,607

18,516

29817040

10809700

10639,2

18809,56

29346,46

24

47059600

20232004

2540836

2,326

7,964

18,524

30856280

10934840

10461,5

19358,92

29525,44

25

47527236

21178404

2647129

2,244

8,003

17,952

31726188

11216538

10327,212

19503,126

29209,878

26

48163600

20702500

2595321

2,326

7,975

18,559

31577000

11180340

10583,5

19598,56

29897,52

27

60746436

26050816

3204100

2,332

8,128

18,957

39780576

13951260

11901,438

22220,694

33935,076

28

60590656

25979409

3193369

2,332

8,134

18,975

39675048

13910008

11886,168

22199,968

33907,104

29

63600625

25150225

3341584

2,528

7,524

19,036

39994625

14578300

12680,25

21875,425

34794,925

30

64802500

26708224

3290596

2,427

8,117

19,696

41602400

14602700

12541,9

22934,45

35725,9

Сума

933596876

405787263

52770140

67,28

223,791

502,437

614970407

221632407

241157,957

439786,465

664776,202

Середнє

31119895,87

13526242,1

1759004,667

2,243

14,438

32,415

39675510,13

14298864,97

15558,578

28373,32

42888,787

Розраховуємо коефіцієнти кореляції:

= 0,992 (сила зв'язку дуже тісна, пряма)

= 0,996 (сила зв'язку дуже тісна, пряма)

= 0,591 (сила зв'язку помітна, пряма)

= 0,679 (сила зв'язку помітна, пряма)

= 0,84 (сила зв'язку тісна, пряма)

Для кожної пари зв'язків приведемо графіки кореляційних полів, які зображені на малюнках:

Рис.3.1 - Кореляційне поле , яке зображує зв'язок результативної змінної та факторної змінної X1

Рис. 3.2 - Кореляційне поле , яке зображує зв'язок результативної змінної та факторної змінної X2

Рис. 3.3 - Кореляційне поле, яке зображує зв'язок результативної змінної та факторної змінної X3

Рис. 3.4 - Кореляційне поле, яке зображує зв'язок результативної змінної та факторної змінної X4.

Рис. 3.5 - Кореляційне поле, яке зображує зв'язок результативної змінної та факторної змінної X5

Для якісної оцінки тісноти зв'язку між ознаками використовують співвідношення Чеддока:

0

0-0,2

0,2-0,3

0,3-0,5

0,5-0,7

0,7-0,9

0,9-0,99

1

Сила зв'язку

Відсут-ня

дуже слабка

слабка

помірна

помітна

тісна

дуже

тісна

Функціональна

Для того, щоб підтвердити або відкинути реальність обмірюваного за допомогою коефіцієнта кореляції зв'язку між змінними Y і Хij, необхідно, використовуючи t-критерій Стьюдента, перевірити значущість самого . Для цього визначається розрахункове значення критерію:

Зіставляємо з tта6л, визначуваним по додатку Г для рівня значущості і числа ступенів свободи .

tрозр1 = 41.4825

tрозр4 = 4.894 tтабл = 4,20

tрозр2 = 58.983

tрозр5 = 8.192

tрозр3 =3.877

Якщо tрозр > tтабл, то лінійний коефіцієнт кореляції вважається значущим, а зв'язок між х та Y - істотним.

Якщо tрозр < tтабл, то коефіцієнт кореляції вважається незначущим, тобто вважається, що зв'язок між X и Y відсутній, і значення r, відмінне від нуля, отримано випадково.

Таким чином, зв'язок між Х та У(tрозр1,tрозр2,tрозр4,tрозр5) є істотним, а лінійний коефіцієнт кореляції - значущий; зв'язок між третьою парою (tрозр3) можна вважати незначущим, тобто зв'язок відсутній.

3.2 Регресійний аналіз парного зв'язку

У даному розділі курсової роботи за результатами кореляційного аналізу вибираємо фактор X1, що має найвищу кореляцію з результативним показником Y (тобто пару перемінних і Y, що мають максимальне значення лінійного коефіцієнта кореляції). Для цієї пари залежних змінних повинні бути представлені найважливіші результати регресійного аналізу:

1) Форма зв'язку лінійна між Y і досліджуваною факторною змінною Х1.

2) Отже рівняння регресії виду щонайкраще описує залежність між Y від Х1

3) Це рівняння є статистично значущим.

3.2.1 Вибір рівняння регресії між двома ознаками

Для вибору форми зв'язку застосуємо раніше побудований графік із зображенням кореляційного поля (графік залежності перемінних Yi і обраної X1). По його вигляду визначаємо, що між даними змінними лінійна форма зв'язку.

Рис. 3.6 Графік із зображенням емпіричної лінії регресії

Рис. 3.7 Графік із зображенням теоретичної лінії регресії

Вибираємо рівняння виду

,

де - теоретичне значення результативної перемінний, обчислене по рівнянню регресії, за умови, що i-ий об'єкт має значення факторної перемінний, рівне Хij;

а, b - параметри рівняння;

Хij - значення j-й факторної перемінний у i-ом спостереженні.

Далі розраховуємо невідомі значення параметрів а і b за даними вибірки. Значення параметра b можна розрахувати по кожній з нижчеприведених формул, використовуючи дані табл.3.1.

;

.

Для розрахунку параметра а використовуємо формулу: .

Рівняння регресії матиме вигляд Y=-339.427+1,604* Х1 .

Кореляційне відношення - це універсальний вимірник тісноти зв'язку, застосовний до усіх випадків кореляційної залежності незалежно від форми цього зв'язку. Факт збігів або розбіжностей значень теоретичного кореляційного відношення і лінійного коефіцієнта кореляції використовують для підтвердження обраної форми зв'язку.

Таблиця 3.2 - Розрахункова таблиця для перебування теоретичного кореляційного відношення і перевірки адекватності рівняння регресії і його параметрів

1848

2248

2624,765

-3069,4

9421216,36

-2692,635

7250283,24

-376,765

141951,87

1867

2325

2655,241

-2992,4

8954457,76

-2662,159

7087090,54

-330,241

109059,12

1916

2514

2733,837

-2803,4

7859051,56

-2583,563

6674797,78

-219,837

48328,307

1890

2651

2692,133

-2666,4

7109688,96

-2625,267

6892026,82

-41,133

1691,924

2502

3780

3673,781

-1537,4

2363598,76

-1643,619

2701483,42

106,219

11282,476

2541

3840

3736,337

-1477,4

2182710,76

-1581,063

2499760,21

103,663

10746,018

2507

3878

3681,801

-1439,4

2071872,36

-1635,599

2675184,09

196,199

38494,048

2559

3905

3765,209

-1412,4

1994873,76

-1552,191

2409296,9

139,791

19541,524

2632

3980

3882,301

-1337,4

1788638,76

-1435,099

2059509,14

97,699

9545,095

3231

4835

4843,097

-482,4

232709,76

-474,303

224963,336

-8,097

65,561

2847

4865

4227,161

-452,4

204665,76

-1090,239

1188621,08

637,839

406838,59

3176

4819

4754,877

-498,4

248402,56

-562,523

316432,126

64,123

4111,759

3374

4884

5072,469

-433,4

187835,56

-244,931

59991,195

-188,469

35520,564

3142

4911

4700,341

-406,4

165160,96

-617,059

380761,809

210,659

44377,214

3175

4962

4753,273

-355,4

126309,16

-564,127

318239,272

208,727

43566,961

3802

5766

5758,981

448,6

201241,96

441,581

194993,78

7,019

49,266

3835

5837

5811,913

519,6

269984,16

494,513

244543,107

25,087

629,358

3890

5849

5900,133

531,6

282598,56

582,733

339577,749

-51,133

2614,584

3946

5858

5989,957

540,6

292248,36

672,557

452332,918

-131,957

17412,65

4045

5963

6148,753

645,6

416799,36

831,353

691147,811

-185,753

34504,177

3968

5999

6025,245

681,6

464578,56

707,845

501044,544

-26,245

688,8

4702

6736

7202,581

1418,6

2012425,96

1885,181

3553907,4

-466,581

217697,83

4372

6820

6673,261

1502,6

2257806,76

1355,861

1838359,05

146,739

21532,334

4498

6860

6875,365

1542,6

2379614,76

1557,965

2427254,94

-15,365

236,083

4602

6894

7042,181

1576,6

2485667,56

1724,781

2974869,5

-148,181

21957,609

4550

6940

6958,773

1622,6

2632830,76

1641,373

2694105,33

-18,773

352,426

5104

7794

7847,389

2476,6

6133547,56

2529,989

6400844,34

-53,389

2850,385

5097

7784

7836,161

2466,6

6084115,56

2518,761

6344156,98

-52,161

2720,77

5015

7975

7704,633

2657,6

7062837,76

2387,233

5698881,4

270,367

73098,315

5168

8050

7950,045

2732,6

7467102,76

2632,645

6930819,7

99,955

9991,002

105801

159522

159521,994

0

85354593,2

0

84025279,49

0

1331456,613

Використовуючи дані табл. 3.2 значення теоретичного кореляційного відношення розраховуємо по одній з нижченаведених формул:

;

Далі за даними табл. 3.2 в одних координатних осях побудуємо емпіричну та теоретичну лінії регресії, тобто графіки залежності перемінних від від (Рис. 3.6, Рис. 3.7).

3.2.2 Оцінка істотності параметрів регресії і рівняння зв'язку

Розраховані для обмеженого числа спостережень параметри a і b рівняння регресії не є єдино можливими, строго однозначними, оскільки являють собою лише оцінку реальних параметрів зв'язку в генеральній сукупності. Тому, знайшовши параметри рівняння регресії, здійснюємо перевірку їхньої значущості (істотності) і з заданою імовірністю визначаємо межі, у яких ці параметри можуть знаходитися. Для цього виконуємо наступні дії:

а) використовуючи дані табл.3.2, знаходимо залишкову дисперсію:

б) обчислюємо факторну дисперсію, використовуючи розрахунки табл. 2.5

в) розраховуємо середні помилки параметрів регресії

;

г) визначаємо фактичні значення t-критерію Стьюдента для параметрів a і b

д) по додатку Г знаходимо критичне значення t-критерію Стьюдента для числа ступенів свободи і рівня значущості = 0,05 і порівнюємо його з фактичними значеннями t-критерію для параметрів a і b. Так як tb факт(48,12)tтабл(2,0484) ,то параметр вважається значущим, і ta факт(-7,47)tтабл(2,0484), отже також вважається значущим.

е) будуємо довірчі інтервали для оцінки істинних значень параметрів a і b, що можуть мати місце в генеральній сукупності

; tтабл = 2,0484

-337,828 ? -265,157 ? -192,486

.

1,520 ? 1,588 ? 1,656

Поряд з перевіркою окремих параметрів зробимо перевірку значущості рівняння регресії в цілому, тобто перевірку адекватності моделі. Ця задача розв'язується за допомогою F-критерію Фишера:

Fтабл = 4,20; Fрозр = 2254,389.

де m - число параметрів у рівнянні регресії (для моделі парної регресії m=2).

Це значення порівнюємо із критичним значенням, яке знаходимо по таблиці додатку E для обраного рівня значущості, рівного 0,05, на перетинанні стовпця, що відповідає числу ступенів свободи , і рядка, що відповідає числу ступенів свободи . Отже, розрахункове значення більше критичного Fрозр Fтабл. Таким чином модель можна вважати значущою на даному рівні довірчої імовірності.

Висновок

Групування початкових даних необхідне для аналізу структури і закономірностей розподілу показників (у відповідальних дослідженнях угрупування проводять для кожного показника, що вивчається), тобто тільки для результативного показника, але різними способами. Групування із нерівновеликими інтервалами застосовується для описання статистичних даних маючи явну асиметрію розподілу частот та частостей. Ширину та межі цих інтервалів установлюють на основі логічного аналізу попередніх даних про якісні і кількісні характеристики вивчаючого явища.

Якщо варіація ознаки виявляється в порівняно вузьких межах і розподіл носить більш менш рівномірний характер, то будують угрупування з рівновеликими інтервалами.

Нерівні інтервали застосовуються в статистиці, коли значення ознаки варіюють нерівномірно і в значних розмірах, що характерне для більшості соціально - економічних явищ, особливо при аналізі макроекономічних показників. Нерівні інтервали можуть бути прогресивно зростаючі або убуваючи в арифметичній або геометричній прогресії.

Власне - випадкова вибірка полягає у відборі одиниць з генеральної сукупності на вдачу або наугад, без яких - або елементів системності . Проте перш ніж провести власне - випадковий відбір, необхідно переконатися, що всі без виключення одиниці генеральної сукупності мають абсолютно рівні шанси попадання у вибірку, в списках або переліку відсутні пропуски, ігнорування окремих одиниць і т.п. Власне - випадковий відбір може бути як повторним, так і безповторним.

В статистиці для опису поведінки випадкових дискретних і безперервних величин використовуються різні закони розподілу. Нормальний закон використовується для опису розподілу випадкових безперервних величин.

Основна задача аналізу варіаційних рядів - виявлення справжньої закономірності розподілу шляхом виключення впливу другорядних, випадкових для даного розподілу чинників - досягається шляхом збільшення об'єму досліджуваної сукупності при одночасному зменшенні інтервалу ряду

Статистика - суспільна наука, яка вивчає кількісну сторону якісно певних масових соціально - економічних явищ і процесів, їх структуру і розподіл, розміщення в просторі, рух в часі, виявляючи діючу кількісну залежність, тенденції і закономірності, причому в конкретних умовах місця і часу

Мета статистичного дослідження, як і будь-якого наукового дослідження, - розкриття сутності масових явищ і процесів, властивими їм закономірностями. Відмітної особливістю цих закономірностей є те, що вони відносяться не до кожної окремої одиниці сукупності, а до всієї маси одиниць в цілому.

Проаналізувавши дані табл. 3.7 можна зробити такі висновки. Сукупності показників У, Х1, Х2 та Х5 не однорідні, оскільки їх коефіцієнти варіації більші ніж 33%. А сукупності показників Х3 та Х4 являються однорідними, бо значення їх коефіцієнтів варіації значно менше 33%.Отже, чим менше значення коефіцієнта варіації, тим однорідніші об'єкти досліджуваної сукупності і надійніші рішення, прийняті з використанням описової статистики.


Подобные документы

  • Методи зведення і групування статистичних даних, розрахунок середньої кількості вантажних автомобілів для всієї сукупності. Аналіз показників варіації кількості вантажних автомобілів: розмах варіації, середнє квадратичне відхилення, загальна дисперсія.

    контрольная работа [457,5 K], добавлен 19.02.2010

  • Групування як розділення сукупності статистичних показників на групи однорідні за якоюсь ознакою. Гістограма як графічне зображення залежності частоти попадання елементів вибірки від відповідного інтервалу угрупування. Використання критерію Фішера.

    контрольная работа [172,4 K], добавлен 12.01.2010

  • Визначення виробничих можливостей фірми. Розрахунок нахилу кривої виробничих можливостей та її зміщення під впливом різноманітних факторів. Розрахунок залежності ціни та валового доходу від обсягу виробництва. Визначення чисельності робітників та доходу.

    курсовая работа [33,1 K], добавлен 07.06.2011

  • Групування підприємств за середньорічною вартістю основних фондів. Розрахунок значення моди, медіани, показників варіації підприємств за прибутком від реалізації, помилки вибірки та інтервал можливих значень середнього розміру результативної ознаки.

    задача [198,5 K], добавлен 25.11.2010

  • Визначення капітальних вкладень в енергетичне підприємство, вартості основних виробничих фондів. Розрахунок річного виробітку і відпуску енергії, річних експлуатаційних витрат. Оцінка техніко-економічних показників виробничої діяльності підприємства.

    контрольная работа [95,2 K], добавлен 06.12.2015

  • Система показників і завдання статистики тваринництва, її організація в Україні. Статистичні групування: види й використання у характеристиці складу явища за певними ознаками. Ряди розподілу вибіркової сукупності, її характеристика та графічне зображення.

    дипломная работа [357,8 K], добавлен 04.12.2010

  • Порівняння двох дисперсій нормальних генеральних сукупностей, виправленої вибіркової дисперсії з гіпотетичною генеральною дисперсією нормальної сукупності, двох середніх нормальних генеральних сукупностей, дисперсії яких відомі (незалежні вибірки).

    реферат [87,1 K], добавлен 10.02.2011

  • Визначення тенденцій розвитку економіки України. Виділення та класифікація соціально-економічних типів явищ. Групування даних та обчислення статичних показників. Індексний і кореляційний аналіз рядів динаміки. Дослідження структури масової сукупності.

    курсовая работа [324,0 K], добавлен 07.06.2019

  • Побудова інтервального ряду розподілу підприємств за обсягом виручки. Обчислення вибіркових характеристик розподілу. Визначення середньої частки вкладів населення в комерційних банках, середньорічної кількості безробітних та середньорічний темп приросту.

    контрольная работа [109,4 K], добавлен 17.01.2011

  • Аналіз даних про рівень реалізації продукції птахівництва в сукупності областей. Середні показники статистики, групування господарств за різними ознаками. Основні внутрішні закономірності процесу реалізації яєць та оцінка чинників, що її формують.

    курсовая работа [337,4 K], добавлен 03.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.