Методы решения уравнений линейной регрессии
Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.06.2010 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
ФИЛИАЛ В Г. ЛИПЕЦКЕ
Контрольная работа
по эконометрике
Липецк, 2009 г.
Задача
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)
Y |
31 |
23 |
38 |
47 |
46 |
49 |
20 |
32 |
46 |
24 |
|
Х |
38 |
26 |
40 |
45 |
51 |
49 |
34 |
35 |
42 |
24 |
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (б=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (б=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости б=0,01 при Х=80% от его максимального значения.
7. Представить графически фактических и модельных значений Y, точки прогноза.
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
1. Уравнение линейной регрессии имеет вид:
= а0 + а1x.
Построим линейную модель.
Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).
Рис.1
Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)
Рис.2
Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).
Таким образом, модель построена и ее уравнение имеет вид
Yт = 12,70755+0,721698Х.
Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков SІe; построить график остатков.
Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).
Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).
Для построения графика остатков нужно выполнить следующие действия:
· Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
· Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).
Рис.3 График остатков
3. Проверить выполнение предпосылок МНК.
Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.
· В уравнении линейной модели Y=a+b*X+е слагаемое е - случайная величина, которая выражает случайный характер результирующей переменной Y.
· Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.
· Случайные члены для любых двух разных наблюдений независимы (некоррелированы).
· Распределение случайного члена является нормальными.
1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.
Количество повторных точек определим по графику остатков: p=5
Вычислим критическое значение по формуле:
.
При найдем
Схема критерия:
Сравним , следовательно, свойство случайности для ряда остатков выполняется.
1. Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить: .
Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда-Квандта.
В упорядоченных по возрастанию переменной X исходных данных () выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.
С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов .
Дисперсионный анализ |
|||||||
df |
SS |
MS |
F |
Значимость F |
|||
Регрессия |
1 |
107,7894737 |
107,7894737 |
15,67347 |
0,15751 |
||
Остаток |
1 |
6,877192982 |
6,877192982 |
||||
Итого |
2 |
114,6666667 |
С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов .
Дисперсионный анализ |
|||||||
df |
SS |
MS |
F |
Значимость F |
|||
Регрессия |
1 |
4,166666667 |
4,166666667 |
0,186916 |
0,707647 |
||
Остаток |
2 |
44,58333333 |
22,29166667 |
||||
Итого |
3 |
48,75 |
Рассчитаем статистику критерия:
.
Критическое значение при уровне значимости и числах степеней свободы составляет .
Схема критерия:
Сравним , следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.
2. Для проверки независимости уровней ряда остатков используем критерий Дарбина-Уотсона
.
Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим ; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты .
Таким образом,
Схема критерия:
Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d'=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.
D'=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.
С помощью функции СУММПРОИЗВ найдем для остатков , следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.
Критическое значение для коэффициента автокорреляции определяется как отношение n и составляет для данной задачи
Сравнения показывает, что r(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.
4) Соответствие ряда остатков нормальному закону распределения проверим с помощью критерия:
.
С помощью функций МАКС и МИН для ряда остатков определим , . Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет . Тогда:
Критический интервал определяется по таблице критических границ отношения и при составляет (2,67; 3,57).
Схема критерия:
2,995 (2,67; 3,57), значит, для построенной модели свойство нормального распределения остаточной компоненты выполняется.
Проведенная проверка предпосылок регрессионного анализа показала, что для модели выполняются все условия Гаусса-Маркова.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента ().
t-статистика для коэффициентов уравнения приведены в таблице 4.
Для свободного коэффициента определена статистика .
Для коэффициента регрессии определена статистика .
Критическое значение найдено для уравнения значимости и числа степеней свободы с помощью функции СТЬЮДРАСПОБР.
Схема критерия:
Сравнение показывает:
, следовательно, свободный коэффициент a является значимым.
, значит, коэффициент регрессии b является значимым.
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Коэффициент детерминации R-квадрат определен программой РЕГРЕССИЯ и составляет .
Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.
Проверим значимость полученного уравнения с помощью F-критерия Фишера.
F-статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет .
Критическое значение найдено для уровня значимости и чисел степеней свободы , .
Схема критерия:
Сравнение показывает: ; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.
Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле
с помощью функции ABS (таблица 5).
ВЫВОД ОСТАТКА |
||||
Наблюдение |
Предсказанное Y |
Остатки |
Отн. Погр-ти |
|
1 |
27,14150943 |
6,858490566 |
20,17% |
|
2 |
29,30660377 |
-3,306603774 |
12,72% |
|
3 |
30,02830189 |
-6,028301887 |
25,12% |
|
4 |
35,08018868 |
2,919811321 |
7,68% |
|
5 |
35,80188679 |
-0,801886792 |
2,29% |
|
6 |
40,13207547 |
-0,132075472 |
0,33% |
|
7 |
45,90566038 |
-3,905660377 |
9,30% |
|
8 |
45,90566038 |
5,094339623 |
9,99% |
|
9 |
46,62735849 |
-1,627358491 |
3,62% |
|
10 |
48,07075472 |
0,929245283 |
1,90% |
По столбцу относительных погрешностей найдем среднее значение (функция СРЗНАЧ).
Схема проверки:
Сравним: 9,31% < 15%, следовательно, модель является точной.
Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости , если прогнозное значение фактора X составит 80% от его максимального значения.
Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно, . Рассчитаем по уравнению модели прогнозное значение показателя У:
.
Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.
Зададим доверительную вероятность и построим доверительный прогнозный интервал для среднего значения Y.
Для этого нужно рассчитать стандартную ошибку прогнозирования:
Предварительно подготовим:
- стандартную ошибку модели (Таблица 2);
- по столбцу исходных данных Х найдем среднее значение (функция СРЗНАЧ) и определим (функция КВАДРОТКЛ).
Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:
При размах доверительного интервала для среднего значения
Границами прогнозного интервала будут
Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.
7. Представить графически фактические и модальные значения Y точки прогноза.
Для построения чертежа используем Мастер диаграмм (точечная) - покажем исходные данные (поле корреляции).
Затем с помощью опции Добавить линию тренда… построим линию модели:
тип > линейная; параметры > показывать уравнение на диаграмме.
Покажем на графике результаты прогнозирования. Для этого в опции Исходные данные добавим ряды:
Имя > прогноз; значения ; значения ;
Имя > нижняя граница; значения ; значения ;
Имя > верхняя граница; значения ; значения
8. Составить уравнения нелинейной регрессии: гиперболической; степенной; показательной.
8.1 Гиперболическая модель
Уравнение гиперболической функции:
= a + b/x.
Произведем линеаризацию модели путем замены X = 1/x. В результате получим линейное уравнение
= a + bX.
Рассчитаем параметры уравнения по данным таблицы 2.
b = =
а = =38,4+704,48*0,03=60,25.
Получим следующее уравнение гиперболической модели:
= 60,25-704,48/х.
8.2 Степенная модель
Уравнение степенной модели имеет вид: =аxb
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:
lg = lg a + b lg x.
Обозначим через
Y=lg , X=lg x, A=lg a.
Тогда уравнение примет вид: Y = A + bX - линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы 3.
b = =
A = = 1,57-0,64*1,53=0,59
Уравнение регрессии будет иметь вид: Y = 0,59+0,64* Х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения.
= 100,59* х0,64.
Получим уравнение степенной модели регрессии:
= 3,87* х0,64.
8.3 Показательная модель
Уравнение показательной кривой: =abx.
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого осуществим логарифмирование обеих частей уравнения:
lg = lg a + x lg b.
Обозначим: Y = lg , B = lg b, A = lg a. Получим линейное уравнение регрессии: Y = A + B x. Рассчитаем его параметры, используя данные таблицы 4.
В = =
А = = 1,57-0,01*35,6=1,27
Уравнение будет иметь вид: Y = 1,27+0,01х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:
=101,27* ( 100,01)х = 18,55*1,02х.
Графики построенных моделей:
Рис.3. Гиперболическая
Рис.4. Степенная
Рис.5. Показательная
9. Сравнение моделей по характеристикам: коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Вывод.
9.1 Гиперболическая модель
Коэффициент детерминации:
=
Вариация результата Y на 70,9% объясняется вариацией фактора Х.
Коэффициент эластичности:
= = 0,05.
Это означает, что при увеличении фактора Х на 1 % результирующий показатель изменится на 0,05 %.
Бета-коэффициент:
Sx==0,01 Sy==8,5 60,25*0,01/8,5=0,07.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,07 среднеквадратического отклонения этого показателя.
Средняя относительная ошибка аппроксимации:
отн = 109,7/ 10= 10,97 %.
В среднем расчетные значения для гиперболической модели отличаются от фактических значений на 10,97%.
9.2 Степенная модель
Коэффициент детерминации:
=
Вариация результата Y на 73,6% объясняется вариацией фактора Х. Коэффициент эластичности:
= = 0,57.
Это означает, что при увеличении факторного признака на 1 % результирующий показатель увеличится на 0,57%.
Бета-коэффициент:
, Sy= и Sx=.
Sx==0,14 Sy==0,10 0,59*0,14/0,1=0,78.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,78 среднеквадратического отклонения этого показателя.
отн= = 93,77/10 = 9,34%.
В среднем расчетные значения для степенной модели отличаются от фактических значений на 9,34%.
9.3 Показательная модель
Коэффициент детерминации:
=
Вариация результата Y на 75,7% объясняется вариацией фактора Х. Коэффициент эластичности:
= 28,71.
Это означает, что при росте фактора Х на 1 % результирующий показатель Y изменится на 28,71 %.
Бета-коэффициент:
Sx==10,5 Sy==0,10 1,27*10,5/0,10=129,10.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 129,1 среднеквадратического отклонения этого показателя.
отн= 91,9/ 10 = 9,19%.
В среднем расчетные значения для показательной модели отличаются от фактических значений на 9,19%.
Вывод
Лучшей из уравнений нелинейной регрессии является показательная: выше коэффициент детерминации, наименьшая относительная ошибка. Модель можно использовать для прогнозирования.
Подобные документы
Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.
контрольная работа [261,1 K], добавлен 23.03.2010Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.
контрольная работа [771,6 K], добавлен 28.04.2016Методика определения параметров линейной регрессии, составления экономической интерпретации коэффициентов регрессии. Проверка выполнения предпосылок МНК. Графическое представление физических и модельных значений. Нахождение коэффициентов детерминации.
контрольная работа [218,0 K], добавлен 25.05.2009Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.
контрольная работа [216,6 K], добавлен 12.05.2010Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.
контрольная работа [99,2 K], добавлен 27.04.2011Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010