Физика разрушения горных пород при бурении нефтяных и газовых скважин
Строение горных пород, деформационное поведение в различных напряженных состояниях; физические аспекты разрушения при бурении нефтяных и газовых скважин: действие статических и динамических нагрузок, влияние забойных условий, параметров режима бурения.
Рубрика | Геология, гидрология и геодезия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 20.01.2011 |
Размер файла | 10,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Особенностью разрушения горной породы при вдавливании клина являются следующие две закономерности:
F3-----F2-->--F1,
d2-----d1--<--d4-----d3.
Ограничением такого способа разрушения горных пород при бурении нефтяных скважин является его нетехнологичность.
Вдавливании цилиндрического индентора с плоским основа-нием (рис.33). Решение этой задачи, проведенное при выполнении условия
Pк--=--F/(pa2)--=--const,
показало (Эйгелес Р.М.), что в горной породе под пятном контакта возникает трехосное напряженное состояние сжатия в объеме усеченной сферы (Рис. 33, область I). Усеченная сфера называется «ядром сжатия».
В области II, окружающей ядро сжатия,? напряжения ?1 становятся положительными, а напряжения ?2, ?3 остаются отрицательными ( ?1 > 0, ?2 < 0, ?3 < 0). В области III: ?1 > 0, ?2 > 0, ?3> 0. Нижней границей ядра сжатия является поверхность ?1 = 0.
Рис.33. Особенности напряженного состояния в горной породе под внедряющимся в неё цилиндрическим индентором
Возникновение трехосного напряженного состояния сжатия горной породы под пятном контакта является основным, сдерживающим проникновение в глубь горной породы забоя скважины породоразрушающих элементов вооружения долот, фактором. Необходимо не только знать механизмы разрушения породы под пятном контакта, но и определить пути стимулирования сдвиговой неустойчивости породы.
Виновником разрушения горной породы, находящейся под индентором, при росте усилия вдавливания F являются касательные напряжения. Наиболее опасными с точки зрения разрушения являются две области горной породы, в которых касательные напряжения достигают максимальных значений:
а) z = 0, ¦r¦ = a - область горной породы, прилегающая к контурной линии,
б) z = a[2(1 + ?) / (7 - ?)]0.5 = z*, r = 0 - область, располагающаяся на оси симметрии z под пятном контакта.
Возникающее на оси симметрии r = 0 максимальное касательное напряжение лишь на 5 % меньше касательного напряжения, возникающего на контурной линии.
В соответствии с наличием двух экстремальных областей выделяют и два механизма разрушения горной породы под вдавливаемым в неё индентором. Ниже мы их рассмотрим. В обоих механизмах процесс разрушения горной породы при вдавливании индентора состоит из трёх стадий, сменяющих друг друга по мере увеличения контактного давления Pк: развитие упругих, остаточных деформаций в горной породе под пятном контакта, а затем отделение части породы от массива (образца) в результате развития кольцевой трещины отрыва, охватывающей контактную площадку.
Первый механизм разрушения. Этот механизм разрушения характерен для таких горных пород, как кварцит, доломиты, песчаники и пр.
Разрушение начинается в первой экстремальной области. Упругая стадия взаимодействия индентора с горной породой определяется в значительной степени контактными условиями: формой пятна контакта (отклонение формы пятна от окружности), величиной трения между индентором и поверхностью породы. При отсутствии смазочного материала (третьего тела), расположенного между индентором и поверхностью образца горной породы, последняя не способна деформироваться вдоль поверхности образца (отсутствие радиальных смещений). Это приводит к тому, что при определенном значении контактного давления от точек контурной линии растет конусная трещина, которая уходит в глубь горной породы и делит породу под индентором на усеченный конус (УК) и консоль (К) (рис. 34).
Дальнейший рост осевого усилия вызывает упругое сжатие усеченного конуса, затем происходит полное или частичное разрушение материала конуса.
Перечисленные процессы приводят к увеличению давления конуса на консоль и изгибу консоли. На внутренней поверхности консоли под действием растягивающих напряжений появляется трещина нормального отрыва, которая при дальнейшем росте усилия F выходит на свободную поверхность. Эту трещину нормального отрыва называют магистральной, т.к. её развитие вызывает завершение разрушения горной породы при вдавливании индентора.
Заключительная стадия разрушения горной породы при вдавливании цилиндрического индентора состоит в отломе консоли в результате передачи на неё части давления Pк индентора через материал конуса.
Откалывание консоли стимулирует смятие усеченного конуса, индентор при этом скачком погружается в глубь горной породы. Дальнейшее разрушение породы под пятном контакта происходит при следующем внедрении индентора в горную породу осевым усилием.
Рис. 34. Два механизма разрушения горной породы: а - первый механизм, б - второй механизм
Второй механизм разрушения. Разрушение начинается во второй экстремальной области (рис. 34 б). Рост силы F приводит к образованию на оси симметрии r = 0 в районе точки z* серповидной области, в которой касательное напряжение достигает максимальной величины ?max. В этой области развивается зона необратимых структурных изменений (пластическая деформация, рост микротрещиноватости зерен, потеря связности между ними). При малых осевых усилиях зона необратимых деформаций (зона предразрушения) локализуется в приповерхностном слое породы. При дальнейшем росте осевого усилия область необратимых деформаций увеличивается за счет развития в глубь массива (образца). Возникает ядро предразрушения, представляющее собой усеченный овал (УО) и упругую консоль (К) (рис. 34 б).
По мере накопления структурных изменений в ядре, оно начинает передавать осевое усилие, развиваемое индентором, на консоль в возрастающей степени, и это приводит к отлому консоли. Так реализуется первый скачок процесса разрушения при вдавливании. При дальнейшем внедрении индентора в горную породу весь процесс повторяется, образуя второй и следующие скачки разрушения. Значения контактного давления, вызывающего последовательные скачки разрушения, возрастают.
Третий механизм разрушения. Этот механизм возникает в горной породе, находящейся на большой глубине при большом давлении и при повышенной температуре. В этом случае вследствие увеличения пластических свойств породы осевое усилие вдавливает индентор в горную породу на большую глубину. Вылом консоли происходит при больших значениях осевого усилия. Возникающая при этом лунка имеет большие размеры.
Механизм разрушения горных пород по Л.А. Шрейнеру. Разрушение горной породы под индентором является результатом развития пластической деформации (пластических сдвигов). Начало пластического деформирования породы связывается с достижением контактным давлением предела текучести породы. Непосредственно под пятном контакта в горной породе в объёме полусферы вследствие большого всестороннего сжатия породы пластического течения не происходит. Пластические сдвиги происходят в горной породе за границей полусферы, причем с ростом контактного давления пластическим деформированием охвачены все более глубокие слои породы, прилегающие к сжатой полусфере.
Когда пластические сдвиги по некоторой конической поверхности, касательной к полусфере, достигают поверхности образца, горная порода под пятном контакта теряет устойчивость, и индентор резко движется вниз, разрушая не только ядро сжатия, но и выламывая консоль. В малопластичных горных породах пластические сдвиги развиваются только в нижней части ядра сжатия и не доходят до поверхности образца.
Вдавливание сферы и усеченного конического индентора. Главной особенностью вдавливания инденторов такой геометрии в горную породу является увеличение площади контакта индентора с горной породой.
Рис. 35. Вдавливание сферического индентора в полупространство
В результате вдавливания сферы радиуса R осевым усилием F (рис. 35) в плоскую поверхность образца горной породы возникает круговой контур давления радиуса a. С ростом осевого усилия радиус кругового контура возрастает, т.е. а = a(F). Это приводит к неравномерному (эллиптическому) распределению давления в горной породе под пятном контакта. Максимальное контактное давление возникает на оси симметрии r = 0, т.е. в центре площади давления. Увеличение радиуса а контура обеспечивает снижение величины давления под пятном контакта, но, с другой стороны, способствует дополнительному разрушению горной породы поверхностью вдавливаемой сферы.
При вдавливании сферы в поверхность горной породы также возникает две экстремальные области, имеющие следующие координаты. Координаты первой области
¦r¦ = a, z = 0,
координаты второй области
r = 0, z = z* = 0,47a.
В этих областях реализуются два механизма разрушения.
Структура поля напряжений под сферой такая же, как и под цилиндрическим индентором, только область всестороннего сжатия значительно меньше. Это означает, что эффективность разрушения при вдавливании сферы меньше, чем в случае вдавливания цилиндрического индентора. С другой стороны, при вдавливании сферы на большую величину можно увеличивать усилие вдавливания F. Это связано с тем, что сферический индентор не теряет устойчивость и при больших усилиях вдавливания (если цилиндрический штамп может изогнуться и, тем самым выйти из строя, то со сферой этого не произойдет при данных значениях осевого усилия).
При вдавливании усеченного конического индентора в горную породу площадь вдавливаемого торца индентора определяется с учетом величины приведенного диаметра dпр:
dпр--=--do--+--dпл.tg--a--,
где do - диаметр вдавливаемого торца усеченного конического индентора, ?пл - величина необратимой деформации, определяемая из деформационной кривой, ? - угол при вершине конического индентора.
Непрерывное увеличение площади контакта сферы и усеченного конуса с горной породой при вдавливании в горную породу приводит к возникновению дополнительного разрушения породы в области, прилегающей к контурной линии (окружности).
Рассмотренные механизмы разрушения горных пород при вдавливании инденторов различной геометрии не учитывают значительного увеличения температуры горной породы забоя при работе породоразрушающего инструмента: в месте контакта с инструментом поверхностный слой горной породы нагревается до нескольких сотен градусов. Это приводит к росту пластических свойств горной породы.
6.2.3 Дилатансионный механизм разрушения
Возникновение под пятном контакта неравнокомпонентного напряженного состояния сжатия позволяет предложить иную трактовку развития разрушения горной породы в ядре сжатия. Согласно исследованиям, проведенным Р.М. Эйгелесом, при вдавливании в горную породу цилиндрического индентора в значительной части ядра сжатия, расположенного под пятном контакта, выполняется условие у2 ~ у3. Последнее означает, что напряженное состояние, в котором находится горная порода ядра сжатия, можно представить в виде суммы напряженных состояний. Первое слагаемое у3 этой суммы определяет величину напряжения, обеспечивающего всестороннее сжатие ядра, а второе (у1 - у3) - представляет собой избыточное давление, действующее вдоль главного направления, совпадающего с направлением действия осевого усилия F.
В этом случае действующие в горной породе ядра сжатия интенсивность касательных напряжений фi и гидростатическое напряжение Рг можно определить выражениями
фi = (у1 - у3) / 30,5;
Рг = (у1 + у3) / 3
и считать, что ядро сжатия находится под действием суммарной нагрузки ВД + ДС, где ВД - есть всестороннее равномерное давление, обеспечивающее величину средней линейной деформации
ег = (е1 + 2е3) / 3,
ДС - интенсивность деформации сдвига
гi = 2(е1 + е3) /30,5,
возникающей под действием девиаторного напряжения. Объемную деформацию еV горной породы ядра сжатия при вдавливании индентора следует представить в виде суммы:
,
где - деформации, вызванные шаровой и девиаторной частями нагрузки, соответственно. Причем объемная деформация ядра состоит из обратимой и остаточной части.
Гидростатическая составляющая напряженного состояния вызывает уменьшение объема ядра сжатия. С увеличением пористости горной породы вес слагаемого в суммарной величине объемной деформации будет возрастать. Развитие положительной дилатансии приводит к необратимому уменьшению пористости горной породы ядра сжатия. Это сопровождается разрушением адгезионных контактов между зернами минералов, разрушением самих минералов и цементирующего вещества, перекомпоновкой продуктов разрушения и их уплотнением.
Уменьшение объема ядра, вызванное действием изотропной составляющей напряженного состояния, с увеличением контактного давления будет иметь затухающий характер. Предельно малой величине объема ядра будет отвечать максимальная плотность горной породы в нем.
При величине контактного давления, обеспечивающего обратимое развитие деформаций в горной породе под пятном контакта, компонента ВД напряженного состояния характеризуется модулем объёмной деформации К, компонента ДС - модулем сдвига G. Совместное действие нагрузок ВД и ДС на горную породу под пятном контакта следует характеризовать коэффициентом поперечного расширения: отношением поперечной деформации , вызываемой девиаторным напряжением, к продольной деформации , вызываемой гидростатической нагрузкой,
.
Минимального значения коэффициент поперечного расширения достигнет при отсутствии поперечной деформации в ядре сжатия. Этот случай соответствует изменению объема ядра сжатия при вдавливании индентора, происходящему без изменения формы ядра, и .
Если считать, что горная порода представляет собой несжимаемый материал, то величина при вдавливании индентора достигнет своего предельного значения 0,5 (при отсутствии разрушения); при этом ядро будет менять свою форму без изменения объема и . Последний случай соответствует основному физическому положению методики определения механических свойств горных пород Л.А.Шрейнера, согласно которому в горной породе под вдавливаемым индентором развивается пластическая деформация.
Реализация условия ВД + ДС в горной породе под площадкой давления приводит к возникновению в ядре сжатия катакластического течения, особенностью которого является дилатансионное увеличение объема ядра сжатия при росте сдвиговой деформации в нем в соответствии с уравнением
,
где - коэффициент пропорциональности.
Особенностью развития объемной деформации в ядре сжатия при вдавливании индентора определяется соотношением девиаторной и шаровой компонент напряженного состояния: неоднородность отношения в ядре сжатия определяет неоднородное развитие отрицательной дилатансии и усилий, передаваемых ядром, на окружающую его горную породу. В части ядра, где отношениеизменяется от нуля до 0,23 (0,638 < z/a < 1,0, z - ось симметрии задачи), увеличение контактного давления приводит к росту необратимой объемной деформации в результате множественного развития трещин нормального отрыва и разрыхления горной породы; с уменьшением Z и увеличением отношения до 0,8 дилатансионное разрыхление горной породы в ядре сжатия ослабляется вплоть до его полного исчезновения и развития дилатансионного дробления горной породы (измельчения), протекающего с одновременным множественным разрушением элементов сухого трения Сен-Венана, уплотнением, агрегированием и компактированием частиц возникающего полидисперсного порошкообразного материала.
Если обозначить через работу упругого деформирования горной породы под пятном контакта, где k - работа деформирования единицы объема породы, V - объем очага разрушения, то энергоемкость процесса вдавливания индентора можно описать выражением, близким по форме записи к закону измельчения П.А. Ребиндера:
где - эффективная энергия разрушаемого тела, Ss - величина свежей поверхности, полученной при вдавливании индентора в горную породу, AStV - работа сил трения элементов Сен-Венана в ядре сжатия, Ак - работа компактирования продуктов измельчения.
Появление нелинейного участка на графике F - д вызвано протеканием катакластического течения в образце горной породы под пятном контакта. Это означает, что увеличение контактного давления Рк в неупругой области деформирования от условного предела текучести горной породы Ро до величины её твердости H связано с энергетическими затратами Ар, идущими на развитие объёмного дробления, сопровождаемого процессами агрегации и компактирования частиц порошкообразного материала. Увеличение необратимой объёмной деформации в нижней части ядра и рост дисперсности порошка в его верхней части при возрастании Рк увеличивает коэффициент передачи ядром осевого усилия на целик и снижает сопротивление ядра сжатия сдвигу, приводит к различному росту продольной е1 и радиальной е3 деформаций ядра сжатия при вдавливании индентора.
Изменение н при вдавливании индентора в горную породу определяется отношением законов изменения модуля объемной деформации и модуля сдвига
н = [(ЗК/2G) - 1] / [(ЗК/G) + 1].
Вид функций К = К(Рг), G = G(фi) различен в силу того, что с ростом контактного давления закономерности деформирования горной породы ядра сжатия при сдвиге и всестороннем сжатии различны: если ег > const, то гi > ?.
Увеличение объёмной деформации ядра при вдавливании индентора вызовет рост коэффициента н. Разрушение горной породы произойдёт при достижении им критического значения нк, соответствующего потери сдвиговой устойчивости горной породы ядра сжатия. Развитию горизонтальных усилий со стороны ядра на окружающую его горную породу препятствует недонасыщение жидкостью полостей трещин нормального отрыва в нижней части ядра сжатия в результате дилатансионного упрочнения ядра и процессы агрегирования и компактирования продуктов измельчения в верхней его части.
Развитие в ядре сжатия катакластического течения означает, что
* повторное вдавливание индентора не вызовет деформационного упрочнения горной породы под пятном контакта;
* на разрушение горных пород вдавливанием должен оказывать влияние коэффициент изотермической сжимаемости жидкости в: чем меньше в, тем раньше должно возникать разрушение горной породы под индентором;
* при действии на горную породу постоянным контактным давлением, превышающем величину условного предела текучести горной породы, должно реализовываться задержанное разрушение;
* разрушение горной породы под индентором можно ускорить искусственным стимулированием сдвиговой деформации ядра сжатия.
6.2.4 Стимулирование разрушения горной породы при вдав-ливании индентора
Можно отметить следующие пути облегчения внедрения индентора в горную породу. В основе предлагаемых путей - снижение работы образования свежей поверхности при множественном развитии трещин нормального отрыва в минералах горной породы, находящихся в ядре сжатия, и стимулирование сдвиговой неустойчивости горной породы ядра сжатия под индентором. Исследованиями Р.М. Эйгесеса установлено, что величина модуля нормальной составляющей главного вектора сил, необходимых для отлома консоли и действующих со стороны деформируемой горной породы ядра сжатия на консоль, значительно меньше действующей осевой нагрузки на индентор (в 20 - 30 раз). Связано это с тем, что ядро сжатия передает только малую часть осевого усилия на консоль.
Для повышения эффективности передачи осевого усилия ядром сжатия и последующего облегчения выкалывания горной породы под индентором необходимо, чтобы порода ядра обладала способностью создавать квазигидростатическое давление на консоль. Это означает, что необходимо добиться существенного возрастания удельной поверхности горной породы, находящейся в ядре сжатия. Использование бурового раствора для изменения эффективности разрушения горной породы под индентором представляется наиболее естественным способом воздействия на дисперсность ядра сжатия. Опережающая фильтрация при положительном дифференциальном давлении в условиях существенного нарушения межгранулярной и трещинной проницаемости горной породы, происходящей при вдавливании в породу зуба долота и его проскальзывании, обеспечивает поступление дисперсионной среды бурового раствора в горную породу забоя на глубину, превышающую глубину формирования ядра сжатия.
Если добавки химических соединений в буровой раствор дополнительно обеспечат снижение зернограничного трения при трансляционно-ротационном движении зерен минералов в ядре сжатия, будут препятствовать компактированию измельчаемой горной породы, то это ускорит процесс разрушения вдавливанием индентора.
Стимулировать развитие сдвиговой неустойчивости в горной породе ядра сжатия должен сам вдавливаемый в горную породу индентор, для этого ему достаточно придать вращение при вдавливании. Наши исследования показали, что в этом случае удается разрушать горную породы ядра сжатия при значительно меньших осевых усилиях (получать выкол уже на стадии упругого деформирования горной породы при вдавливании индентора). Отрицательной стороной такого воздействия на горную породу является возрастание абразивного износа индентора. Для облечения внедрения индентора в горную породу необходимо вводить в буровой раствор химические соединения, стимулирующие снижение эффективых напряжений в ядре сжатия, т.е. приводящие к уменьшению коэффициента сжимаемости дисперсионной среды промывочной жидкости. В этом случае при меньших осевых усилиях произойдет сдвиговое разрушение вследствие роста порового давления в дилатансионно-деформируемом ядре сжатия горной породы под площадкой давления.
6.3 Разрушение горной породы забоя скважины сдвигом
Внедрение индентора (при бурении - зубца шарошечного долота, лопастей лопастного долота и пр.) в высокопластичную, высоко-пористую горную породу сопровождается её смятием под пятном контакта. Форма лунки в этом случае соответствует форме зубцов шарошки. Вдавливание инденторов в хрупкую горную породу завершается образованием лунки выкола и проникновением индентора в породу на величину, превышающую глубину вдавливания индентора. Но для реализации эффективного разрушения горной породы на забое этого явно недостаточно. Повышается эффективность разрушения породы при наличии тангенциальной силы T, стремящейся срезать слой горной породы толщиной ?.
С увеличением твердости горной породы затрудняется внедрение породоразрушающих элементов вооружения долот в породу. Это приводит к снижению вклада тангенциального усилия в эффективность разрушения горной породы на забое скважины. По этой причине необходимо не только хорошо представлять механизм разрушения горной породы под вдавливаемым в неё индентором, обладающим различной геометрией (цилиндр, конус, сфера и пр.), но и искать возможности для облегчения внедрения индентора в породу под действием осевого усилия для повышения эффективности разрушения.
В зависимости от соотношения упругих и пластических свойств разрушаемой горной породы отделение слоя горной породы от забоя будет проходить различно. Если порода пластичная, то будет реали-зовываться сливная стружка, с ростом упругих свойств горной породы будет реализовываться скалывание горной породы перед передней гранью инструмента, создающего тангенциальное усилие (сдвиговая и отрывная стружка).
Реализация разрушения горных пород резанием при использовании лопастных долот происходит с помощью породоразрушающих эле-ментов - лезвий долота, имеющих в основном несимметричную форму.
Разрушение горной породы лопастным долотом реализуется при суперпозиции двух движений - под действием постоянно действующего осевого усилия F, обеспечиваемого весом бурильной колонны, лопасть долота внедряется в горную породу, вызывая ее разрушение под пятном контакта; под действием силы резания T происходит разрушение породы перед передней гранью инструмента после предварительного сжатия породы.
Разрушающее воздействие лопастного долота на горную породу действием силы F усиливается возникновением динамической нагрузки из-за накопления упругой энергии в бурильной колонне и неоднородности свойств горной породы. В этом случае горная порода дополнительно разупрочняется вследствие возникновения волн напряжений. Действие динамического нагружения будет наиболее эффектно при разрушении хрупких горных пород. С увеличением пластических свойств большее разрушение горной породы совершается силой резания T.
У шарошечного долота дополнительная способность разрушать горную породу сдвигом обеспечивается конструкционным путем: выносом вершины основного конуса шарошки за ось долота на величину f, смещением осей шарошек относительно центра забоя (оси долота) в плане на величину k в направлении вращения долота, созданием многоконусных шарошек. Появление скалывающего эффекта при кратковременном проскальзывании зубьев долота вдоль забоя без вращения шарошки вокруг своей оси связано с возникновением мгновенной оси вращения, проходящей через точку пересечения осей шарошки и долота и через нескользящую точку, расположенную на образующей конуса, контактирующего с забоем.
Скорость поперечного скольжения точек шарошки (контактирующих с забоем зубьев долота) относительно забоя при известном направлении мгновенной оси вращения определится выражением
Vск = ·r ,
где = [д2 + ш2 + 2дш cos(дш) ]0,5 - абсолютная мгновенная угловая скорость вращения шарошки,
r - расстояние зуба долота от мгновенной оси вращения.
Проскальзывания при работе шарошечного не происходит лишь в том случае, когда между передаточным отношением долота и радиусом шарошки rш, радиусом долота Rд выполняется условие
д / ш = rш / Rд,
справедливое для всех венцов. В этом случае абсолютная скорость рассматриваемых зубцов шарошки (скорость скольжения зубцов шарошки)
Vск = шrш - дRд
равна нулю. Такие шарошки называют шарошками чистого качения. При перекатывании такой шарошки по горной породе между последней и зубом шарошки возникает трение качения, а не трение скольжения (как в случае резания горной породы лопастным долотом), поэтому абразивный износ шарошек существенно меньше. Напомним, что разрушение горной породы забоя скважины эти шарошки осуществляют дроблением, возникающим в результате удара зубца по забою, и последующим смятием, раздавливанием горной породы при внедрении зубца в забой.
Проскальзывание приводит к резанию (если порода пластичная) или скалыванию (если порода упругохрупкая) поверхностного слоя горной породы забоя. Возникающее скольжение элементов вооружения увеличивает объем разрушенной горной породы за один оборот долота, приводит к росту механической скорости бурения.
Величина смещения k осей шарошек относительно центра забоя (оси долота) у долот различного типа следующая: у долот типа М смещение равно 8 мм и более (высокая скалывающая способность), типа С - 5 мм (средняя скалывающая способность), долот типа Т - 0,05 мм (низкая скалывающая способность).
Степень проскальзывания шарошек характеризуется коэффициентом скольжения (проскальзывания) Кск, величина которого определяется отношением суммарной площади проскальзывания зубьев за один оборот долота Sск к площади всего забоя скважины Sз:
Кск = Sск / Sз.
В зависимости от конструкции долота величина коэффициента скольжения изменяется от 0,1 (для твердых пород) до 20 % (для мягких пород). Появление трения скольжения при работе таких долот вызывает существенный рост абразивного износа долот.
Долота типа СТ, Т, ТК, К, ОК изготавливаются практически без смещения осей цапф лап относительно оси долота. Эти долота разрушают горные породы, главным образом за счет вдавливания в забой и ударного воздействия твердосплавных штырей и зубьев по забою скважины.
Использование при разбуривании твердых горных пород шарошеч-ных долот с практически нулевой скалывающей способностью связано как с увеличением сопротивления горной породы скалыванию, наблю-дающемуся с ростом твердости горной породы, так и с увеличением абразивного изнашивания вооружения долота. Последнее особенно заметно при бурении абразивных горных пород.
Положительной стороной скольжения вооружения вдоль забоя яв-ляется и улучшение очистки забоя от шлама.
К сказанному добавим, если при использовании лопастного долота его вращение при наличии вдавливающего усилия способствует раз-витию сдвигов в возникающем под лопастью (под пятном контакта) ядре сжатия горной породы (искусственное стимулирование сдвиговой неустойчивости, обеспечивающее облегчение сдвигового разрушения горной породы ядра сжатия под пятном контакта и внедрение лопасти в поверхность забоя), то при применении шарошечных долот такое сти-мулирование сдвиговой неустойчивости исчезает именно там, где оно крайне необходимо: при бурении твердых горных пород.
Использование проскальзывания для стимулирования сдвиговой неустойчивости горных пород, обладающих большой твердостью, будет возможно только при разработке новых конструкционных материалов, способных сопротивляться абразивному изнашиванию в условиях боль-ших контактных давлений и повышенных температур.
7. ЭНЕРГЕТИКА ДРОБЛЕНИЯ ШЛАМА НА ЗАБОЕ СКВАЖИНЫ И ОЧИСТКА ЗАБОЯ
Обеспечение больших механических скоростей при бурении скважин невозможно при несовершенной промывки забоя скважины. Разрушение горной породы, происходящее при бурении, приводит к появлению на поверхности забоя продуктов разрушения - шлама. Плохо организованная промывка забоя скважины приводит к накоплению шлама на забое, происходит зашламование забоя. В этих условиях породоразрушающий инструмент вместо разрушения породы забоя осуществляет вторичное разрушение частиц шлама, происходит переизмельчение шлама.
Лишь при реализации совершенной очистки забоя породоразру-шающие элементы вооружения взаимодействуют не со шламом, рас-положенным на забое, а с неразрушенной горной породой забоя скважины. К реализации совершенной очистки необходимо стремиться. Для этого необходимо совершенствовать и породоразрушающий инст-румент, и промывку забоя скважины.
В реальных условиях бурения почти невозможно избежать переизмельчения уже разрушенной, но не отделенной от поверхности забоя породы.
Переизмельчение горной породы в этом случае происходит в присутствии промывочной жидкости (бурового раствора). На раз-рушение шлама (дробление шлама) тратится дополнительная энергия. При дроблении частиц шлама под действием инструмента твердые частицы шлама сначала претерпевают объёмное деформирование (упругое, пластическое) и только после этого происходит разрушение.
Работу, необходимую для дробления шлама, можно разделить на две части: одна часть расходуется на деформирование твердой частицы, а другая - на образование новых поверхностей при разрушении частицы шлама. Работа упругого и пластического деформирования частицы шлама пропорциональна её объёму:
Wдеф = k1V,
где k1 - коэффициент пропорциональности, равный работе объёмного деформирования единицы объёма частицы шлама, V - объём частицы.
Работа образования новой поверхности при дроблении минерала пропорциональна приращению свежей поверхности:
Wп = гэфф?Дs,
где Дs - прирост свежей поверхности.
Полную работу, затрачиваемую на дробление, можно выразить уравнением Ребиндера П.А.:
W = Wдеф + Wп = kV + гэфф??s.
Так как объёмное деформирование пропорционально объёму нагружаемого тела V, который пропорционален кубу своего линейного размера, т.е. l3, а изменение поверхности тела пропорционально квадрату линейного размера тела, т.е. l2, то выражение для полной работы дробления можно записать
W = k1l3 + k2l2?о? = l2(k1l + k2 гэфф),
где k2 - коэффициент пропорциональности.
Из последнего выражения следует, что при больших размерах тела, т.е. при больших значениях l, можно пренебречь величиной работы образования поверхности. В этом случае--W--»--k1l3,--т.е. полная работа диспергирования определяется работой упругого и пластического деформирования образца.
При k1 =??сж2/2E из последнего выражения получаем закон дробления Кирпичева-Кика.
При малом линейном размере разрушаемого тела полная работа диспергирования определяется работой, затраченной на образование свежей поверхности:
W--»--k2l2--гэфф,
так как в этом случае можно пренебречь работой объёмного дефор-мирования диспергируемого тела.
При измельчении частиц шлама на забое при реализации несовершенной очистки забоя частицы шлама разрушаются, в первую очередь, в местах прочностных дефектов (макро- и микротрещины). По этой причине по мере измельчения прочность частиц породы, остающихся на забое, растет (масштабный фактор). Под масштабным фактором понимают изменение прочности образца твердого тела при изменении его размера: чем больше объем образца, тем меньше его прочность. Такое изменение прочности обычно связывают с вероятностью нахождения опасного (т.е. большого по величине) дефекта в теле: чем больше объем образца, тем больше вероятность нахождения в нем опасного дефекта.
Упрочнение горной породы, связанное с масштабным фактором, наблюдается при плохой промывке забоя скважины. Уменьшение размера частиц шлама при переизмельчении горной породы cпособствует росту прочности частиц шлама (масштабное упрочнение). Руководствуясь этим, можно заключить, что энергоёмкость процесса дробления шлама на забое будет зависеть от степени измельчения породы. Увеличение дисперсности шлама на забое скважины при плохо организованной промывке приводит к большому расходу энергии при их дальнейшем дроблении.
По размеру частиц шлама, возникающих в процессе бурения скважины, можно судить, в определенной степени, об эффективности бурения скважины. Преобладание мелкой фракции в продуктах разрушения свидетельствует о плохой промывке забоя и низкой эффективности разрушения горных пород на забое.
Эксперименты и имеющийся опыт бурения показывают, что лучшая очистка забоя и вынос шлама из скважины происходит при следующих значениях сомножителей, определяющих величину удельной гидравли-ческой мощности:
* удельный расход
Q/S = (0,35 - 0,7) м3/с·м2;
* величина скорости бурового раствора при истечении из насадков V = (80 - 120) м/с;
* число Рейнольдса в насадках долота должно быть не меньше 105. Другими словами, режим течения бурового раствора под долотом должен быть турбулентным. В этом случае обеспечиваются наиболее благоприятные условия для удаления шлама с забоя и выноса его в кольцевое пространство. Создаются радиальные потоки раствора, увеличива-ющие величину сил, удаляющих шлам с забоя;
* перепад давления на насадках долота должен составлять не менее (50 - 60) % от давления, развиваемого буровым насосом при циркуляции;
* потери давления в кольцевом пространстве скважины должны быть минимальными. Это означает, что режим течения в кольцевом пространстве должен быть ламинарным.
8. ВЛИЯНИЕ ПАРАМЕТРОВ РЕЖИМА БУРЕНИЯ И ЗАБОЙНЫХ УСЛОВИЙ НА РАЗРУШЕНИЕ ГОРНЫХ ПОРОД
8.1 Параметры режима бурения и показатели работы долот
Режим работы долот первой и третьей подгрупп характеризуется следующими параметрами:
F - осевая нагрузка, dim F = Н,
n - частота вращения долота, dim n = об/мин.,
Q - интенсивность промывки забоя, dim Q = м3/ с.
П - параметры бурового раствора (плотность, вязкость, концент-рация твердой фазы, показатель фильтрации).
Осевая нагрузка создается, в основном, весом утяжеленных бурильных труб и забойного двигателя. Для успешного разрушения горных пород при бурении скважин величина осевого усилия составляет 100 - 250 кН. При роторном бурении осевое усилие создается большим, чем при турбинном бурении и связано это с тем, что при большом осевом усилии затруднено, а то и вовсе невозможно, вращение вала турбобура циркулирующим буровым раствором.
При роторном бурении частота вращения долота меняется в диапазоне (20 280) об/мин, при бурении забойными двигателями - (300 700) об/мин.; наибольшая же частота вращения достигается при бурении скважин алмазными долотами (от 400 об/мин и выше).
Подача буровых насосов составляет несколько десятков литров в секунду.
Изменение каждого параметра режима бурения влияет на эффективность разрушения горных пород на забое скважины, причем влияние каждого из параметров на разрушение горных пород при бурении зависит от заданных значений других параметров.
Соотношения между параметрами режима бурения подбирают та-ким образом, чтобы обеспечить решение поставленной перед бурением скважины задачи: достижение минимальных сроков строительства скважины, снижение себестоимости сооружения скважины.
К основным технико-экономическим показателям работы долот относятся следующие:
? проходка на долото L - длина ствола скважины в массиве горных пород, пробуренного данным долотом. Этот показатель позволяет судить об объёме полезной работы, выполненной данным долотом при бурении. Для шарошечного и лопастного долот этот показатель совпадает с проходкой за рейс, т.к. эти долота выходят из строя в течение первого же рейса. Показателем конечной стадии отработки долота является резкое снижение механической скорости бурения от начальной величины при износе вооружения долота или резкое повышение крутящего момента при износе опоры;
? долговечность долота tд представляет собой время бурения скважины данным долотом до его полного износа. Эту величину не следует путать с временем бурения tб ствола скважины длиной l < L , которое всегда меньше величины tд. И лишь в том случае, когда бурение происходит одним долотом до его полного износа, обе величины совпадают.
? механическая скорость бурения
Vм = L / tб
характеризует буримость горной породы данным инструментом при данных значениях параметров режима бурения. С ростом глубины скважины высокая механическая скорость менее выгодна, чем увели-чение проходки за рейс. Объясняется это увеличением длительности спускоподъёмных работ при росте глубины скважин;
? рейсовая скорость бурения
Vр = L / ( tд + tсп) =
где tсп - длительность спуско-подъёмных операций с учетом времени наращивания колонны и смены долота. Величина Vр прямо пропорциональна механической скорости, но зависит (и это главное) от отношения tсп / tб . Такая зависимость определяет немонотонное изменение рейсовой скорости;
? техническая, коммерческая, полная скорости бурения определяются по формулам, аналогичным формуле, определяющей величину и изменение рейсовой скорости: в первом случае дополнительно к величинам tб , tсп учитывается длительность вспомогательных производительных работ tв , во втором - величина tв и продолжительность непроизводительных работ (ликвидация аварий, остановки и т.п.) tн, в третьем - tв, tн и продолжительность строительства вышки и монтажных работ tм ;
? удельные эксплуатационные затраты на обеспечение 1 м проходки (себестоимость одного метра пробуренной скважины), определяемые по формуле
С = [Св ·( tд + tсп + tв) + Cд ] / L,
где Св - стоимость 1 часа работы буровой установки, Cд - стоимость долота.
Стоимость одного метра проходки определяется пятью переменными. На величину С значительно влияет стоимость одного часа работы буровой установки Св: для пробуренного интервала на одной площади при бурении различными буровыми установками одним и тем же долотом получают различную стоимость проходки при одинаковом времени чистого бурения.
Увеличение проходки на долото L приводит к резкому сокращению числа спускоподъемных операций и снижает удельные эксплуатационные затраты на 1 м проходки.
Об эффективности бурения чаще всего судят по рейсовой скорости проходки скважины и стоимости 1 м проходки.
Cогласно исследованиям В.С. Федорова, механическая скорость в процессе бурения изменяется по экспоненциальному закону
,
где Vo - начальное значение механической скорости, k - коэффициент, величина которого зависит от износа вооружения долота.
Связь между проходкой на долото hд и его долговечностью tб устанавливается формулой
.
Выражение для рейсовой скорости Vр через полученное выражение для проходки на долото примет вид
,
Из формулы следует, что величина рейсовой скорости зависит от четырех параметров: tб, tсп, k, Vo.
Графики изменения величин Vм, Vр, С приведены на рис. 36. Если механическая скорость бурения постоянно снижается с увеличением продолжительности бурения, то изменение рейсовой скорости и удельных затрат отличает более сложное поведение.
Плавное снижение механической скорости бурения при росте времени бурения вызывается непрерывным износом зубцов шарошки. Возникновение резкого спада величины механической скорости бурения шарошечным долотом по сравнению с ее начальной величиной свидетельствует о катастрофическом износе вооружения.
Кривая Vр = Vр (tб) имеет асимметричный характер: восходящая ветвь кривой имеет более крутое возрастание, чем нисходящая ветвь (рис.36). Рейсовая скорость возрастает до своего максимального значения Vрmax, а затем снижается. Время достижения максимального значения рейсовой скорости определяет оптимальное время бурения tбопт данным долотом.
Величина удельных эксплуатационных затрат С с ростом времени бурения вначале снижается, но при достижении значения tэ начинает возрастать. Экономически выгодная продолжительность бурения tэ указывает на момент подъема долота из скважины. Обычно выполняется неравенство tэ > tбопт.
Если перед началом бурения ставится задача обеспечения минимальных сроков строительства скважины (бурение скважины по задан-ной траектории до проектной глубины), то оптимальной стратегией бурения будет та, которая обеспечивает замену породоразрушающего инструмента при достижении максимальной величины рейсовой скорости.
Если же преследуется задача минимизации затрат на строительство скважины, то замену инструмента необходимо проводить по достижении времени бурения величины tэ. Критерий C = Cmin более обобщающий, чем критерий tб = (tб)min , так как он учитывает больше факторов.
Большие значения механической скорости бурения не могут быть решающим фактором для оценки производительности труда буровой бригады, т.к. это может быть достигнуто при таких значениях осевого усилия и частоты вращения, при которых происходит не только значительный износ инструмента, требующий замену долота, но и возникает аварийная ситуация, связанная с поломкой долота.
Перечисленные показатели работы долот только в том случае объективно характеризуют работу инструмента, когда они привязаны к конкретным условиям его работы: указаны показатели режима бурения (управляемые параметры) и свойства горных пород, геолого-структурные особенности разбуриваемого массива (неуправляемые параметры). Важно правильно выбрать значение управляемых параметров при изменении неуправляемых, т.е. определить тип инструмента и показатели режима бурения при известных значениях показателей свойств горных пород. Значения режимных параметров, обеспечивающие лучшие показатели работы долота при использовании имеющегося бурового оборудования, определяют оптимальный (рациональный) режим бурения.
Режимы бурения, применяемые при бурении скважин в неблагоприятных геологических условиях (зоны поглощений раствора, осложнений, связанных с нарушением целостности ствола скважины и т.п.), при бурении второго ствола, называются специальными режимами.
8.2 Влияние параметров режима бурения на механическую скорость
Необходимость увеличения механической скорости бурения очевидна. Согласно оценкам, проведенным специалистами Башкирской буровой школы, возрастание Vмех в два раза снижает стоимость 1 м проходки на 50 %, увеличение же стойкости долота снижает стоимость 1 м проходки только на 11 %.
Каждый параметр режима бурения (F, n, Q) влияет на эффективность разрушения горных пород по-своему, причем влияние изменения одного из параметров на изменение механической скорости зависит от фиксированной величины других параметров. То или иное значение механической скорости бурения Vмех зависит не только от эффективности разрушения горных пород на забое скважины (это лишь одно из условий роста механической скорости), но и от совершенства очистки забоя от шлама, эффективности выноса шлама на поверхность.
8.2.1 Влияние осевого усилия
При механическом способе разрушения горных пород основная доля энергии расходуется на внедрение породоразрушающих элементов вооружения в горную породу. Величина давления, создаваемого породоразрушающим инструментом на забое скважины, определяется не только величиной осевого усилия F, но и значением контактной площади Sк данного долота. Под контактной площадью понимается сумма площадей всех зубьев на всех шарошках, контактирующих в данный момент с горной породой забоя скважины (для шарошечных долот), сумма площадей торцовой поверхности лопастей (для лопастных долот). Величина контактной площади всех долот (шарошечных, лопастных, алмазных) табулирована, т.е. известна.
При увеличении контактного давления Pк = F / Sк , линейно зависящего от осевого усилия, разрушение на забое происходит по-разному. Рассмотрим три возможных случая:
а) Рк > Н. В этом случае в горной породе, находящейся под пятном контакта, возникает объемное разрушение. Оно характеризуется тем, что возникает при единичном взаимодействии породоразрушающего элемента долота с данной “точкой” поверхности горной породы. Возникающие частицы шлама в этом случае имеют максимальный размер. Разрушение горной породы, происходящее при выполнении приведенного условия, является наиболее эффективным.
Подобные документы
Технология бурения нефтяных и газовых скважин. Закономерности разрушения горных пород. Буровые долота. Бурильная колонна, ее элементы. Промывка скважины. Турбинные и винтовые забойные двигатели. Особенности бурения скважин при равновесии "скважина-пласт".
презентация [1,5 M], добавлен 18.10.2016Применяемое буровое оборудование и режимные параметры при разрушении горных пород. Характеристика термодинамических параметров зарядов промышленных взрывных веществ. Расчет параметров взрывных работ для рыхления пород при бурении в блоках на карьере.
курсовая работа [494,0 K], добавлен 02.06.2014Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.
отчет по практике [2,0 M], добавлен 20.03.2012Описание содержания и структуры курсовой работы по бурению нефтяных и газовых скважин. Рекомендации и справочные данные для разработки конструкции скважины, выбора режима бурения, расхода промывочной жидкости. Разработка режима цементирования скважины.
методичка [35,5 K], добавлен 02.12.2010Определение твердости горной породы, коэффициента пластичности и работы разрушения, осевой нагрузки на долото при бурении из условия объемного разрушения горной породы, мощности, затрачиваемой лопастным долотом. Механические характеристики горных пород.
контрольная работа [198,3 K], добавлен 01.12.2015Исследование основных способов бурения нефтяных и газовых скважин: роторного, гидравлическими забойными двигателями и бурения электробурами. Характеристика причин и последствий искривления вертикальных скважин, естественного искривления оси скважин.
курсовая работа [2,0 M], добавлен 15.09.2011Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.
курсовая работа [1,9 M], добавлен 07.07.2015Образование нефтяных и газовых месторождений в складках слоев горных пород. Стратиграфическая шкала осадочных пород, моделирование внешней формы залежи. Осуществление разделения продукции скважин в сепараторах. Основные элементы, обеспечивающие сепарацию.
контрольная работа [75,3 K], добавлен 13.05.2011Температура образования метаморфических горных пород. Потенциальные и оптимальные дебиты скважин. Насосно-компрессорные трубы (НКТ) для перемещения внутри колонн газов, жидкостей во время применения газовых и нефтяных скважин. Резьбовые скрепления (НКТ).
контрольная работа [18,7 K], добавлен 11.12.2010Использование при бурении нефтяных и газовых скважин в глубоководных районах морей и океанов плавучих буровых установок, способных самостоятельно или с помощью буксиров менять районы бурения. Самоподъемная, полупогружная и гравитационная платформа.
реферат [160,7 K], добавлен 01.12.2010