Физика разрушения горных пород при бурении нефтяных и газовых скважин

Строение горных пород, деформационное поведение в различных напряженных состояниях; физические аспекты разрушения при бурении нефтяных и газовых скважин: действие статических и динамических нагрузок, влияние забойных условий, параметров режима бурения.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 20.01.2011
Размер файла 10,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из условия обеспечения объёмного разрушения горной породы величина осевой нагрузки на шарошечное долото рассчитывается по формуле

F--=--aHSк,

где ? = (0,33?1,59) - коэффициент, учитывающий реальные условия разрушения горной породы в скважине (величину дифференциального давления, температуру горных пород, состояние забоя и пр.), Sк - контактная площадь данного долота. Величина ??определяется по промысловым данным.

Зная твердость горных пород и контактную площадь используемого долота, можно определить осевую нагрузку, требуемую для бурения скважины данным шарошечным долотом. Нужно помнить, что по указанной формуле можно определить лишь ориентировочное значение требуемого для разрушения горной породы осевого усилия, т.к. формула не учитывает работоспособность опор долота.

Наблюдающийся экстремальный характер изменения Vмех от F связывают с ограничением высоты зубцов на шарошках, наличием шлама на забое. Осевая нагрузка, при которой достигается максимальное значение механической скорости, называется критической.

Следует иметь в виду следующее: при чрезмерном увеличении осевого усилия бурильная колонна теряет устойчивость и претерпевает продольный изгиб, что приводит к незапланированному искривлению скважины.

б) Рк < Н. При такой величине контактного давления возникает усталостно-объемное разрушение горной породы. Непременным следствием установления подобного соотношения между величиной контактного давления и твердостью горной породы является возникновение разрушения при неоднократном действие породоразрушающего элемента вооружения долота на одну и ту же точку забоя. Разрушение при этом связывают с повреждаемостью породы забоя, развитием трещин в горной породе под пятном контакта при каждом ударном цикле нагряжения. Вид лунки выкола такой же, какой возникает при объёмном разрушении.

Количество циклов нагружения n, необходимое для разрушения горных пород, зависит от их механических свойств горной породы: с увеличением хрупкости пород величина n меньше. Зависимость между величиной контактного давления Pк и количеством циклов нагружения n, необходимых для разрушения породы, имеет вид (рис. 37). Эта усталостная кривая описывается уравнением

Ркmn = С,

где m - показатель степени, С = const - постоянная усталостной кривой.

Чем больше Pк, тем меньше необходимо создать циклов нагружения для разрушения горной породы.

Минимальное контактное давление, вызывающее усталостное разрушение при циклическом нагружении при выполнении условия Рк < Н, называется пределом усталости горной породы Рус. Считаетcя, что

Рус = (1/20 ч 1/30)H.

Жлобинским Б.А. установлено, что механизм усталостно-объём-ного разрушения горных пород похож на механизм разрушения хрупких горных пород при статическом вдавливании индентора. Лунка выкола возникает вследствие раздробления горной породы под пятном кон-такта, передачи давления от индентора на окружающую породу и возникновения вокруг пятна контакта овальной (если индентор имеет прямоугольную площадку вдавливания) или круглой (при цилиндрическом инденторе) трещины, последняя стадия разрушения связана с раздавливанием уплотненного ядра под индентором и образованием лунки.

в) Рк << Н. Это условие определяет поверхностное разрушение горной породы в результате истирающего действия инструмента. Скорость бурения при выполнении этого неравенства незначительна. Размер частиц шлама мал.

Зависимость механической скорости бурения от величины осевого усилия F (контактного давления Рк) при фиксированной скорости вращения имеет вид (рис. 38).

Рис. 38. Зависимость механической скорости бурения от осевой нагрузки (контактного давления) на долото (n = const, Q = const)

Представленное на рис. 38 изменение механической скорости бурения от величины осевого усилия указывает на различный механизм разрушения горных пород в трех областях изменения F (или Рк). При малых нагрузках (участок I) зависимость Vмех = f(F) линейная: прямая выходит из начала координат. Угол наклона прямой к оси F характеризует интенсивность изменения механической скорости при росте осевого усилия. Касательная к кривой, проведенная на участке II, свидетельствует о том, что в этом диапазоне изменения осевого усилия прирост механической скорости больше, чем на первом участке (касательная отсекает от оси F положительный отрезок). На участке III угол наклона касательной меньше, чем на участке II, что свидетельствует о том, что на третьем участке изменение Vмех при росте F меньше, чем на втором участке (касательная отсекает от оси F отрезок, расположенный левее начала координат).

Часто зависимость Vмех = f(F) представляют в виде степенной зависимости

Vмех = кFa.

При a = 1 из этого выражения получаем связь между Vмех и F для участка I, при а > 1 - для второго, а < 1 - для третьего участка.

При бурении скважины выбранное значение осевого усилия может обеспечить появление любого из приведенных участков. Рекомендация увеличивать величину осевого усилия F для реализации объемного разрушения не всегда оправдана, т.к., во-первых, часто при больших усилиях начинается интенсивный износ долота, увеличивающий контактную площадь долота, и приводящий к снижению Vмех, во-вторых, бурение при меньщих осевых нагрузках, сопровождаемое снижением механической скорости, часто приводит к достижению положительного результата, например, росту проходки на долото, росту рейсовой и коммерческой скорости, снижению себестоимости метра проходки. Cледует иметь в виду, что увеличение осевого усилия приводит к росту интенсивности искривления скважины, это связано с возрастанием отклоняющей силы при увеличении прогиба КНБК, большим разрушением стенки скважины.

Зашламование забоя существенно изменяет зависимость Vмех = f(F), так как происходит не только снижение Vмех , но и уменьшение величины осевого усилия, при котором достигается наибольшее значение механической скорости.

Приведенное на рис. 38 изменение механической скорости отличает не только бурение скважин шарошечным, но и лопастным долотом.

Выбор параметра режима бурения - осевой нагрузки на долото - по диаграмме Vмех = f(F) не гарантирует от ошибок.

В настоящее время при бурении чаще всего реализуется поверхностное (при турбинном бурении) и усталостно-объемное разрушение горных пород. Связано это, в основном, с тем, что материал, из которого изготавливается породоразрушающий инструмент, меньше изнашивается при реализации усталостно-объёмного разрушения.

Контроль за величиной F при бурении скважины реализуется с помощью индикаторов веса гидравлических (ГИВ), электрических (ЭИВ), которые устанавливаются на неподвижном конце талевого каната.

8.2.2 Влияние частоты вращения долота

Общий вид зависимости Vм = f(n) хорошо известен из работ В.С.Федорова (рис.39). На кривой выделяются два линейных участка: начальный и конечный. На этих участках Vм изменяется пропорционально n, что свидетельствует о постоянстве проходки за оборот .

Основными факторами, определяющими вид кривой Vм = f(n), являются следующие:

* время контакта к зуба шарошечного долота с горной породой,

* число поражений забоя зубьями долота.

С увеличением частоты вращения n возрастает число поражений забоя зубьями шарошечного долота, возрастает скорость и энергия соударения. Это обеспечивает рост механической скорости бурения. Но одновременно с этим увеличение n обеспечивает и снижение времени контакта к , что снижает эффективность разрушения горных пород и, как следствие, механическую скорость. В результате действия указанных факторов при бурении возникает сложная зависимость

Vм = f(n).

Рис. 39. Общий вид зависимости Vм = f(n) при различных осевых усилиях (F2 > F1)

На участке кривой Vм = f(n), расположенном между начальным и конечным линейными участками, изменение механической скорости, происходящее при постоянной осевой нагрузке, но росте частоты вращения, характеризуется снижением темпа прироста механической скорости. При определенной частоте вращения nкр наблюдается резкое снижение темпа прироста механической скорости. Это происходит вследствие резкого уменьшения глубины внедрения зуба долота в горную породу за один оборот, снижения времени контакта зуба долота с забоем скважины. Для мрамора, например, nкр = 100 мин-1. С ростом твердости горной породы nкр возрастает.

Энергоемкость разрушения возрастает. По этой причине бурение скважины с частотой вращения n > nкр нерационально. При данном значении осевого усилия увеличение n долота с целью повышения механической скорости целесообразно лишь до тех пор, пока возрастает рейсовая скорость бурения.

Обладая технологической информативностью, зависимость Vм = f(n), тем не менее, не может быть гарантом выбора рекомендуемого значения частоты вращения n. Тому есть причина: отсутствие приборов, надежно контролирующих частоту вращения. В роторном бурении частота вращения долота равна частоте вращения ротора и может быть измерена тахометром достаточно точно. Для измерения частоты вращения долота в турбинном бурении используется турботахометр, датчик которого устанавливается в верхнем узле турбобура и соединяется с валом последнего. Работа турботахометра основана на фиксации специальной аппаратурой, устанавливаемой на вертлюге, импульса давления, формируемого при кратковременном перекрытии трубного пространства через каждые 10 оборотов вала турбобура. Каналом связи служит промывочная жидкость, находящаяся внутри бурильной трубы. Особенностью гидравлического канала связи является существенное затухание энергии сигнала в связи с потерями на трение у стенок колонны и наличие помех, создаваемых работающим буровым насосом.

С увеличением глубины скважины в большей степени проявляются пластические свойства горных пород, требуются большие деформации до разрушения и большая длительность контакта зубьев долота с забоем. Это вызывает необходимость снижения частоты вращения долота с углублением скважины. Существует и другая причина, по которой необходимо снижать величину n при росте глубины скважины. Значительный рост мощности, необходимой для привода ротора из-за роста потерь на трение бурильной колонны о стенку скважины.

Частота вращения инструмента оказывает существенное влияние на качественный отбор керна.

8.2.3 Влияние интенсивности промывки забоя скважины

Циркуляция промывочной жидкости при бурении скважины должна обеспечить очистку забоя от частиц разрушенной горной породы, предотвратить вторичное перемалывание этих частиц. Именно по этой причине проектирование режима очистки забоя скважины промывочной жидкостью является составной частью проектирования параметров режима бурения.

С возрастанием расхода Q улучшается очистка забоя, следовательно, повышается эффективность работы долота. Но в то же время увеличиваются потери давления в кольцевом пространстве пропорционально Q2. Это приводит к росту гидродинамического давления на забой, создаются неблагоприятные условия для отрыва шлама от поверхности забоя, снижается механическая скорость бурения. Другими словами, отрицательным последствием интенсификации промывки скважины может стать увеличение дифференциального давления на забое скважины и, как следствие, ухудшение условий разрушения горной породы.

Отмеченное двоякое влияние производительности циркуляции промывочной жидкости на скорость бурения отражено формулой, предложенной В.С. Федоровым:

Vм--=--Q--/(a--+--bQ),

где a, b - параметры, зависящие от свойств разбуриваемых горных пород, промывочной жидкости, размеров кольцевого канала (рис. 40).

Рис. 40. Зависимость механической скорости проходки от расхода промывочной жидкости

Для улучшения очистки забоя скважины следует стремиться не к бесконечному увеличению производительности циркуляции, а добиваться этого использованием насадков уменьшенных диаметров, приближенных к забою, созданием радиальных турбулентных потоков промывочной жидкости вдоль поверхности забоя, обеспечивающих отрыв частиц шлама от забоя, введением в промывочную жидкость смазывающих добавок, снижающих величину сил, удерживающих частицы шлама на забое и пр.

Согласно исследованиям отечественных ученых, удельный расход промывочной жидкости, подаваемой на забой скважины, для шарошечных и лопастных долот должен составлять (0,057 ч 0,065) л/(с?см2), и для алмазных - (0,06 ч 0,1) л/(с?см2).

Особо подчеркнем, что увеличение механической скорости бурения применением гидромониторных насадков обеспечивается не дополнительным разрушением горной породы забоя высоконапорными затопленными струями промывочной жидкости, а улучшением очистки забоя от шлама при использовании гидромониторных насадков. Для успешного механогидравлического воздействия на горную породу забоя скважины и разрушения горной породы струей жидкости, вытекающей из насадков, необходимо значительно увеличить скорость истечения затопленной струи из насадков (довести скорость истечения струи до нескольких сотен метров в секунду), воздействовать струей на ту часть площади забоя, на которую воздействует зуб долота.

При бурении мягких горных пород повышение расхода промывочной жидкости приводит к размыву стенки скважины, что может обеспечить рост интенсивности искривления скважины. Введение в промывочную жидкость смазывающих добавок снижает трение инструмента о горную породу стенки скважины, что способствует меньшему ее разрушению и обеспечивает меньшее искривление скважины.

Завершая разговор о влиянии расхода промывочной жидкости на величину механической скорости, отметим, что практика бурения скважин с высокими механическими скоростями (свыше 10 - 15 м/ч) в Западной Сибири обнаружила влияние “утяжеления” восходящего потока промывочной жидкости с увеличением концентрации шлама в ней на величину механической скорости. Это позволяет ставить задачу оптимизации расхода промывочной жидкости с целью минимизации гидродинамического давления на забой скважины.

Измерение расхода промывочной жидкости осуществляется индукционными расходомерами РГР-7, РГР-100, принцип действия которых основан на явлении электромагнитной индукции и обеспечивает контроль расхода только электропроводящей промывочной жидкости.

8.3 Взаимосвязь параметров режима бурения и технико-экономических показателей

При роторном способе бурения при фиксированной частоте вращения долота n = const, но при росте величины осевого усилия F наблюдается

* увеличение механической скорости;

* резкое снижение долговечности долота;

* рост проходки на долото, но при достижении осевым усилием величины Fкр происходит снижение проходки на долото: имеется оптимальное значение осевой нагрузки, при которой проходка на долото достигает наибольшей величины (рис. 41).

Рис. 41. Закономерности изменения показателей бурения при n = const при роторном способе бурения

При фиксированном значении осевого усилия F = const, но возрастающей частоте вращения n

* происходит резкое снижение долговечности долота;

* изменение механической скорости бурения происходит аналогично тому, как указано на рис. 42;

* существует значение nкр, при котором реализуется наибольшая проходка на долото: имеется оптимальное значение частоты вращения, при которой проходка на долото достигает наибольшей величины (рис. 42).

При турбинном бурении с ростом осевой нагрузки

* происходит снижение частоты вращения долота,

Рис. 42. Закономерности изменения показателей бурения при F = const при роторном способе бурения

* механическая скорость бурения и проходка на долото возрастают до своих максимальных значений:

М = Мьфч при А = А1ж

h = hmax при F = F2, F1 < F2,

но с последующим ростом F они уменьшаются. Оптимальный режим бурения, обеспечивающий меньшие сроки бурения скважины, будет достигнут при осевой нагрузке F, удовлетворяющей условию

F1 < F < F2.

Анализ взаимосвязи параметров режима бурения с его технико-экономическими показателями позволяет сделать следующие выводы.

При роторном бурении параметры режима бурения F, n, Q при регулировании не зависят друг от друга, т.е. при бурении их можно изменять независимо. Это является большим преимуществом роторного способа бурения. Но нужно понимать и наличие связи между параметрами режима бурения: увеличение осевого усилия F , например, способствуя повышению эффективности разрушения горной породы, требует роста и расхода Q (к изменению Q в зависимости от роста n это относится, по понятной причине, в меньшей степени). На практике из трех основных режимных параметров основное внимание при роторном способе бурения уделяется двум - F и Q.

В целях увеличения долговечности долота при возрастании осевой нагрузки рекомендуется снижать частоту вращения долота и наоборот, это означает, что параметром режима бурения может служить произведение двух режимных параметров n?F.

При бурении слабо сцементированных, малоабразивных горных пород целесообразно применять большие частоты вращения, но пониженные осевые нагрузки; если же разбуривается скальная горная порода, то верхнему уровню осевых нагрузок на долото должен соответствовать нижний уровень частот вращения.

При разбуривании абразивных, трещиноватых горных пород целесообразно снижать частоту вращения ротора во избежание повышенного износа и разрушения вооружения долота, герметизирующих элементов опор шарошек и пр.

При использовании долот второго класса (долота с твердосплавным вооружением) и герметизированными опорами режим бурения должен выбираться таким, чтобы не допускались вибрация бурильной колонны, неравномерное вращение и подача долота, резкие торможения и остановки: это приводит к разрушению твердосплавных зубков и прежде-временному выходу из строя герметизирующих элементов и опор в целом.

Для подавления возникающих при бурении скважины вибраций необходимо уменьшать осевую нагрузку или изменять частоту вращения ротора.

При использовании в качестве буровых агентов воздуха или газа нагрузка на долото и частота его вращения должны быть меньшими по сравнению с таковыми при бурении скважин с промывкой забоя водой. Это объясняется низкой очищающей способностью воздушной струи. Недостаточная подъемная способность воздуха должна компенсироваться высокой скоростью движения в кольцевом канале (5 - 8 м/с).

При турбинном способе бурения осевая нагрузка на долото F, создается так же, как и в роторном бурении, но основным режимным параметром становитсся интенсивность промывки Q (из-за того, что изменение расхода Q неизменно влечет за собой изменение параметров n и F). В самом деле, расход промывочной жидкости Q должен быть достаточен для того, чтобы гидравлический забойный двигатель мог развивать момент Мд, необходимый для вращения долота при заданном значении осевого усилия F . Рост осевого усилия вызывает повышение момента Мд , при этом величина n cнижается (рис. 43).

Рис. 43. Закономерности изменения показателей бурения при турбинном способе бурения

Механическая скорость бурения при фиксированных значениях осевого усилия F и частоты вращения n растет с увеличением гидравлической мощности на долоте, т.е. с ростом Q и скорости истечения жидкости из насадков долот Vo.

8.4. Влияние забойных условий на разрушение горных пород при бурении

8.4.1 Влияние гидростатического давления

Величина гидростатического давления, действующего на горную породу забоя скважины, для вязкой жидкости определяется выражением

Pг = ?жgh,

где ?ж - плотность бурового раствора, g - ускорение свободного падения, h - расстояние по вертикали от дневной поверхности до рассматриваемой точки скважины.

Отрицательное влияние увеличения гидростатического давления на изменение механической скорости бурения проявляется в следующем:

* сдерживает развитие магистральной трещины, рост которой завершает разрушение горной породы при вдавливании индентора;

* удерживает шлам на забое скважины, затрудняя, тем самым, очистку забоя.

С увеличением глубины скважины и с ростом плотности бурового раствора сдерживающая роль гидростатического давления возрастает.

Закон изменения гидростатического давления вязкопластической жидкости несколько иной:

Pг--=--rжgh----±----2tt--h--/--ro;

Pг--=--rжgh----±--2tt--h--/--(R-----ro),

где R - радиус внешней трубы, ro - радиус внутренней трубы.

Записанные уравнения представляют собой закон изменения гидростатического давления вязкопластической жидкости в трубе радиуса ro и кольцевом канале R - ro . Отсюда следует, что при движении вязко-пластической жидкости по трубе, кольцевому пространству возникает дополнительное сопротивление движению жидкости: наряду с составляющей, обусловленной весом столба промывочной жидкости (?жgh), возникает пластическая составляющая сопротивления.

Наличие двух знаков в формулах имеет смысл, если перепад давления большой и жидкость начинает двигаться вверх, то при движении преодолевается не только вес столба жидкости, но и сопротивления, возникающие вследствие трения. В этом случае перепад давления и сила трения действуют в разные стороны и формула верна со знаком плюс. Если же перепад давления мал и жидкость движется вниз под действием собственного веса, то перепад давления и сила сопротивления трения действуют в одну сторону и в формулах нужно учитывать знак минус. Это же можно выразить и немного иначе. Если имеется слабый приток жидкости в скважину, то в формулах сохраняем знак «плюс»; если жидкость отфильтровывается в пласт из скважины, то в формулах учитываем знак «минус».

Как правило, после прекращения циркуляции в скважине наблюдается некоторое снижение гидростатического давления. Твердые частицы дисперсной фазы, вступая во взаимодействие друг с другом, образуют структуру, которая препятствует седиментации шлама. Эта структура вступает во взаимодействие со стенками скважины и трубами, структурированный раствор как бы зависает на стенках скважины и трубах, снижая нагрузку на забой.

8.4.2 Влияние гидродинамического давления

Гидродинамическое давление жидкости на забой скважины Pз определяется суммарным действием гидростатического давления Pг = ?жgh и потерями давления в кольцевом пространстве ?Pкп, возникающими при циркуляции промывочной жидкости в скважине:

Pз--=--rжgh--+--DPкп.

Влияние плотности промывочной жидкости ?ж на процессы, протекающие в скважине при бурении, разнообразно. С увеличением ?ж облегчается подъем шлама с забоя вследствие увеличения силы Архимеда, уплотняется шламовый слой на забое, возрастает фильтрация из-за повышения перепада давления между скважиной и пластом, уплотняется корка на стенке скважины и пр. Положительное влияние роста плотности промывочной жидкости существенно уступает ее отрицательному влиянию. Именно по этой причине для повышения эффективности бурения скважин необходимо снижать плотность промывочной жидкости (если позволяют геологические условия).

Давление Pз препятствует развитию магистральной трещины, т.к. прижимает консоль к забою. Разделив левую и правую части записанного выражения на величину gh , формуле можно придать иной вид:

экв--=--ж--+--DPкп--/--gh--=--ж--+--ц--.

Эта формула показывает, что увеличение гидравлических сопротивлений в кольцевом пространстве при циркуляции промывочной жидкости эквивалентно возрастанию ее плотности на величину ц. Такое возрастание плотности может произойти с увеличением производительности циркуляции (интенсивности промывки). Особенно это заметно при переходе от ламинарного режима течения к турбулентному. Величина ??Pкп может измениться при этом на 2 МПа и даже более. Это давление мало по сравнению с величиной гидростатического давления столба промывочной жидкости, но оно может оказать решающее влияние на снижение механической скорости бурения, когда гидростатическое и пластовое давления близки по величине. Этого может оказаться достаточно для того, чтобы механическая скорость бурения уменьшилась на 50 - 100 %. Таким образом, плотность промывочной жидкости не является единственным параметром, изменение которого может привести к существенному изменению гидростатического давления Pг и давления жидкости на забой Pз.

Имеющиеся данные однозначно свидетельствуют о том, что рост давления жидкости на забой приводит к уменьшению механической скорости бурения, если остальные условия сохраняются неизменными. Снижение гидростатического давления обеспечивается использованием аэрированных (газированных) жидкостей, воздуха, дискретным или плавным изменением плотности промывочной жидкости. Однако следует помнить, что достижение максимальной механической скорости бурения не является целью бурения. Наблюдающееся увеличение или уменьшение механической скорости бурения, происходящее при изменении плотности промывочной жидкости, чаще всего является сопутствующим результатом, главной же целью введения химреагентов в буровой раствор, изменяющих плотность раствора, является предупреждение осложнений.

8.4.3 Влияние дифференциального давления

При разбуривании проницаемых горных пород необходимо учитывать влияние дифференциального давления Рдиф на разрушение

Рдиф = Pз - Pпл,

где Pз - давление жидкости на забой, Pпл - пластовое (поровое) давление.

Формула показывает, что на процесс отламывания консоли влияет перепад давления между скважиной и пластом. Величина дифференциального давления на забое скважины определяется плотностью промывочной жидкости и гидравлическими сопротивлениями в кольцевом пространстве: чем ниже эти величины, тем меньше дифференциальное давление.

Процесс углубления забоя скважины может происходить при положительном дифференциальном давлении

Р = Pз - Pпл 0

(репрессия), при равновесном давлении Р = 0 или Pз = Pпл и при несбалансированном давлении на забое Pз < Pпл (депрессия). В последнем случае дифференциальное давление называют отрицательным.

При разрушении проницаемых горных пород фильтрат бурового раствора проникает в горную породу забоя и изменяет величину давления в порах. В этом случае выражение для дифференциального давления принимает вид

Рдиф = Pз - Pр,

где Pр - давление жидкости на глубине разрушения. По этой причине для улучшения разрушения горной породы долотом необходимо стремиться к увеличению показателя фильтрации промывочной жидкости и к уменьшению толщины фильтрационной корки. Такое требование выполняется при бурении непроницаемых пород: в этом случае фильтрат бурового раствора не в состоянии изменить величину давления поровой жидкости. Это объясняет тот факт, что именно при разбуривании проницаемых горных пород дифференциальное давление имеет более выраженное влияние на разрушение.

Влияние дифференциального давления на разрушение породы на забое проявляется в следующем:

? при положительном дифференциальном давлении в результате прижатия частиц разрушенной горной породы к забою скважины затрудняется промывка забоя. Это приводит к неоднократному перемалыванию уже разбуренной породы;

? при отрицательном дифференциальном давлении задача отрыва частиц шлама от поверхности забоя решена: забой очищает себя самостоятельно;

? положительное дифференциальное давление способно существенно упрочнить горные породы, слагающие поверхность забоя, вследствие того, что разность давлений (Pз - Pпл) приводит к появлению сжимающих напряжений. Для разрушения горной породы при положительном дифференциальном давлении необходимо увеличивать контактное давление

Рк = F / S

Практика бурения показывает, что чем меньше вязкость и больше показатель фильтрации промывочной жидкости, тем скорее выравнивается давление в зоне разрушения и меньше сказывается негативное влияние положительного дифференциального давления на разрушение горных пород;

? отрицательное дифференциальное давление, наоборот, разупрочняет горную породу забоя: разность давлений (Pз - Pпл) приводит к появлению растягивающих напряжений в скелете горной породы. При бурении с отрицательным дифференциальным давлением лучше использовать растворы с нулевой фильтрацией, образующие непроницаемый кольматационный слой на стенке скважины.

Эмпирическое уравнение, связывающее величину механической скорости с дифференциальным давлением, имеет вид

Vмех = Vоe-k(Pз - Pпл),

где Vо = Vмех при Pз = Pпл, k - экспериментальная постоянная.

Если разницу (Pз - Pпл) поддерживать постоянной, то механическая скорость не будет меняться. Согласно промысловым данным, увеличение дифференциального давления от 0 до 7,0 МПа во многих случаях сопровождалось снижением механической скорости на 24 - 73 %. Причем вид этой зависимости может быть как прямолинейным, так и криволинейным.

Имеются данные, свидетельствующие о том, что степень влияния дифференциального давления на механическую скорость проходки зависит от осевой нагрузки на долото. С увеличением осевого усилия зависимость механической скорости от дифференциального давления становится более существенной. Это связано с большим повреждением горной породы забоя при внедрении в него породоразрушающих элементов вооружения долота под действием большего усилия.

Дифференциальное давление может резко измениться при проводке скважин через зоны с аномально высоким и аномально низким пластовым давлением: в первом случае произойдет увеличение механической скорости бурения, а во втором - уменьшение Vмех. Подчеркнем, что при разбуривании горных пород в зонах с АВПД возможно достижение больших механических скоростей бурения и при использовании утяжеленных буровых растворов.

При бурении скважин встреча с аномально высоким пластовыми давлением может быть установлена, в частности, по следующим признакам:

1. Самопроизвольное постоянное увеличение механической скорости бурения.

Когда скважина входит в область залегания горных пород с аномально высоким пластовым давлением, то при постоянной плотности бурового раствора силы, удерживающие частицы шлама на забое, снижаются по мере роста порового давления. В этих условиях возникает самопроизвольное постоянное увеличение механической скорости бурения, что является признаком внедрения скважины в зону АВПД с постоянным возрастанием порового давления. При быстром росте аномальности давления возможно и резкое увеличение механической скорости: “скачок проходки”. “Скачок проходки” следует рассматривать как признак возможного проявления (при возрастании механической скорости более чем в два раза).

Существенное увеличение механической скорости бурения вследствие улучшения условий очистки забоя от шлама наблюдается после того, как перепад давления между скважиной и пластом становится меньше 3,5 МПа. Когда давление в скважине превышает поровое более, чем на 3,5 МПА, то признаки АВПД подавляются и механическая скорость бурения уже не может служить индикатором высокого порового давления, особенно в условиях небольшой аномальности давления и высоких значений плотности раствора.

2. Изменение вращающего момента долота и нагрузки на крюке.

Если перепад давления направлен в сторону скважины, то глинистая горная порода будет выдавливаться в ствол. Уменьшение диаметра скважины, происходящее при неизменных частоте вращения и осевого усилия контролируется увеличением вращающего момента и нагрузки на крюке.

3. Увеличение количества шлама на вибросите.

При вхождении скважины в область аномального порового давления улучшается отделение частиц шлама от поверхности забоя. Это способствует тому, что не происходит вторичного разрушения частиц шлама. По этой причине на вибросите появляется не только увеличенное количество шлама, но и размер частиц шлама больший.

По сложившейся практике бурение рекомендуется вести при положительном дифференциальном давлении, когда

Pз - Pпл = (1,0 - 1,5)·10-1 МПа

Новые технологии бурения позволяют вести бурение при отрицательном дифференциальном давлении. Бурение на депрессии требует от буровиков четкого представления о том, что происходит на забое. Первым условием, которое необходимо выполнить при бурении скважин с отрицательным дифференциальным давлением, является качественное разобщение скважины и пласта. Это достигается управляемой кольматацией - искусственным разделением скважины и пересекающих ее пластов горных пород.

Достижение условия Pз < Pпл обеспечивается постепенным снижениием плотности циркулирующей промывочной жидкости экв.

8.4.4 Влияние угнетающего давления

Заключительная стадия разрушения горной породы вдавливанием индентора связана с развитием магистральной трещины. В момент возникновения этой трещины давление в её полости равно нулю, т.е.

Рпол = 0.

Это означает, что между давлением промывочной жидкости на забое скважины Рз и давлением в полости магистральной трещины возникает перепад давления. Этот перепад давления

Ру = Рз - Рпол

называется угнетающим давлением. Выбор данного названия связан с тем, что давление Ру прижимает (угнетает) консоль к поверхности неразрушенной породы забоя и препятствует отлому консоли.

Угнетающее давление может достигать десятков МПа. По этой причине оно существенно затрудняет развитие разрушения породы. Снижение угнетающего давления связано с проникновением промывочной жидкости в полость магистральной трещины. Для заполнения полости магистральной трещины промывочной жидкостью и увеличения в ней давления необходим промежуток времени (tз + tу), где tз -время заполнения полости трещины жидкостью, tу - время восстановления давления в полости.

Для облегчения разрушения породы на забое необходимо, чтобы фильтрат промывочной жидкости обладал малой вязкостью и проникал в полость магистральной трещины с большей скоростью. В зависимости от времени контакта зуба долота с горной породой значения Рпол и Ру будут различными:

? если время контакта зуба долота с горной породой таково, что выполняется условие

фк < (tз + tу),

то давление в полости магистральной трещины отсутствует Рпол = 0 и угнетающее давление достигает максимальной величины

Ру = Рз = Pmax.

В этом случае происходит сдерживание развития магистральной трещины;

? если время контакта зуба долота с горной породой больше времени заполнения фильтратом промывочной жидкости полости магистральной трещины, т.е.

фк > (tз + tу), то Рпол = Рпл.

В этом случае угнетающее давление достигает минимального значения

Ру = Рз - Pр = Pmin

и способствует улучшению разрушения горной породы.

В общем случае будет справедливо следующее неравенство:

з-----Pр)--Ј----Ру----Ј--Рз,

т.е. в зависимости от условий разрушения проницаемых горных пород, угнетающее давление может измениться от дифференциального давления до давления, оказываемого промывочной жидкостью на забой скважины.

Исследования, проведенные во ВНИИБТ (Байдюк Б.В.) показали, что с увеличением угнетающего давления происходит уменьшение угла естественного скалывания горной породы при вдавливании индентора (угол между направлением выхода магистральной трещины на забой скважины и осью скважины). Это приводит к снижению объема разрушенной горной породы при каждом вдавливании инденторов и росту энергоемкости её разрушения.

При бурении скважин величина возникающего угнетающего давления регулируется не только изменением физических свойств промывочной жидкости (плотность, вязкость, показатель фильтрации), но и частотой вращения породоразрушающего инструмента.

8.4.5 Влияние параметров бурового раствора на изменение механической скорости бурения

Основные показатели свойств буровой промывочной жидкости (плотность, вязкость, показатель фильтрации (Ф), содержание твердой фазы (СТФ)) взаимосвязаны. Например, с увеличением концентрации твердой фазы в промывочной жидкости возрастает ее плотность, но одновременно снижается показатель филь-трации; обработка промывочной жидкости полимером для уменьшения показателя фильтрации вызывает рост вязкости жидкости и т.п. Нет ни одного химического соединения, вводимого в промывочную жидкость, который бы избирательно изменял лишь один ее параметр. Лишь путем комбинации химических реагентов возможно избирательно регулировать любой показатель промывочной жидкости при фиксированых остальных. По этой причине рассмотрим коротко степень влияния каждого показателя на эффективность разрушения горных пород и механическую скорость бурения. Качественные зависимости механической скорости бурения от показателей свойств промывочной жидкости приведены на рис. 44.

Влияние плотности. Плотность оказывает разнообразное влияние на процесс разрушения горных пород забоя скважины. С одной стороны, рост плотности бурового раствора увеличивает силу Архимеда, удаляющую шлам с забоя, приводит к росту динамической фильтрации на забое, способствующей разупрочнению поверхностного слоя горных пород на забое, укрепляет стенку скважины. С другой же стороны, рост плотности увеличивает поглощение бурового раствора (если для этого создались условия), увеличивает гидростатическое давление, ухудша-ющее отрыв шлама от забоя, сдерживает развитие магистральной трещины. Положительное влияние повышения плотности бурового раствора на процесс бурения значительно уступает отрицательному.

Наибольшее изменение механической скорости бурения происходит при изменении плотности промывочной жидкости (на водной основе) от 1,0 до 1,4 г/см3. В зависимости от глубины скважины и механических свойств разбуриваемых горных пород величина Vм при указанном изменении плотности уменьшается в 2,0 - 2,5 раза, проходка на долото снижается до 3,5 раз. Приведенные цифры, характеризующие изменения механической скорости бурения и проходки на долото отличают как роторный, так и турбинный способы бурения.

Влияние концентрации твердой фазы. Показатели работы долот при росте концентрации дисперсной фазы (твердой фазы) в промывочной жидкости СТФ снижаются. Причем влияние твердой фазы на показатели работы долот зависит от способа бурения. Наиболее вредно на работу долот влияет твердая фаза при турбинном бурении (при увеличении концентрации твердой фазы до 10 % механическая скорость Vм снижается в два раза); при роторном способе бурения подобное снижение механической скорости происходит при росте концентрации твердой фазы от 10 до 30 %. Отметим следующее правило: уменьшение содержания твердой фазы в области высоких ее концентраций (например, с 24 до 20 %) приводит к существенно меньшему приросту механической скорости Vм, чем при снижении концентрации твердой фазы с 12 до 8 %. Эта тенденция усиливается по мере дальнейшего снижения содержания твердой фазы в растворе.

Рис. 44. Зависимость механической скорости проходки от свойств промывочной жидкости: а - плотности, б - содержания твердой фазы, в - показателя фильтрации, г - условной вязкости

Природа воздействия твердой фазы бурового раствора на эффективность разрушения горных пород связывается с ухудшением условий зарождения и распространения трещин, формирующих лунку выкола в горной породе забоя скважины.

Следует отметить и следующие замеченные при бурении скважин факты:

? разные материалы, составляющие твердую фазу промывочной жидкости, по-разному влияют на показатели бурения скважин. Например, при увеличении содержания твердой фазы (барит, буровой шлам, глина) на 1 % величина Vм снижается на 2.6 %, 4.8 %, 6.7 %, соответственно (общее содержание твердой фазы 4 - 12 %). Эти цифры наглядно свидетельствуют о том, что в растворе необходимо иметь минимальную концентрацию глинистых частиц, тщательно контролировать их содержание очисткой, разбавлением раствора, заменой его свежеприготовленным;

? помимо концентрации твердой фазы на величину механической скорости оказывает влияние и дисперсность дисперсной фазы: с уменьшением дисперсности твердой фазы величина Vм становится меньше.

Влияние вязкости. Имеющиеся данные о влиянии вязкости на механическую скорость бурения не столь определенны, как в случае влияния плотности на величину Vм. В значительной степени это связано со сложностью использования этого понятия в бурении. У ньютоновских жидкостей величина коэффициента динамической вязкости остается постоянной при любой скорости сдвига. Но даже при использовании ньютоновской жидкости в качестве промывочной жидкости для оценки ее подвижности используется условная вязкость, характеризующая гидравлические сопротивления при истечении промывочной жидкости из прибора СПВ-5 или стакана Марша через короткую трубку. Величина же времени истечения лишь отдаленно несет информацию о величине коэффициента динамической вязкости жидкости. Следует помнить, что с уменьшением вязкости (условной, динамической, пластической) промывочной жидкости отмечается общий положительный эффект: снижаются энергетические затраты на циркуляцию, улучшается очистка забоя за счет ранней турбулизации потока под долотом, появляется возможность реализовать большую гидравлическую мощность на долоте, уменьшаются потери давления в кольцевом пространстве скважины.

Опыт бурения скважин показывает, что верхний предел условной вязкости, определяемой прибором СПВ-5, не должен превышать 30 с для промывочных жидкостей плотностью до 1,4 г/см3 и 45 с для промывочных жидкостей плотностью, превышающей 1,4 г/см3. Пластическая вязкость для этих же растворов не должна превышать 6 и 10 Па·с, соответственно.

Имеющиеся данные свидетельствуют о том, что с увеличением условной вязкости от 30 до 80 с механическая скорость бурения снижается на 30 %, а средняя проходка на долото - на 20 - 25 %; по данным ВНИИБТ с увеличением условной вязкости промывочной жидкости в среднем от (4 - 20) до (8 - 120) с механическая скорость бурения снижается на 20 - 40 %. Особенно заметно это в области повышенных плотностей промывочной жидкости (1,3 - 1,4) г/см3 .

Влияние пластической вязкости бурового раствора, являющейся значительно более строгой технологической характеристикой бурового раствора, чем условная вязкость, на эффективность работы долот изучено только в стендовых условиях при бурении горных пород шарошечными долотами малого диаметра и алмазными долотами. Установлено, что величина механической скорости при бурении шарошечными долотами уменьшается с ростом пластической вязкости, но при превышении вязкостью величины 40·10-3 Па·с влияние ее на Vм исчезает. Наибольшее влияние на уменьшение механической скорости вязкость оказывает при возрастании до значения 28·10-3 Па·с.

При стендовом бурении алмазными долотами установлена прямо-линейная зависимость между Vм и пластической вязкостью в диапазоне (5,0 - 30)·10-3 Па·с. Стендовые исследования показывают, что зависимость механической скорости от пластической вязкости одинакова при скоростях вращения долота 60 и 180 об/мин.

Влияние показателя фильтрации промывочной жидкости. Для улучшения разрушения горной породы на забое скважины целесообразно стремиться к увеличению показателя фильтрации промывочной жидкости. Его влияние на механическую скорость бурения связывается с изменением гидродинамических процессов в разрушаемом на забое поверхностном слое горной породы. Имеющиеся практические данные (опыт бурения скважин на Днепровско-Донецкой впадине) показывают, что Vм растет при возрастании показателя фильтрации во всем диапазоне изменения плотности промывочной жидкости.

Для достижения больших значений Vм необходимо, чтобы начальная фильтрация промывочной жидкости в момент разрушения горной породы на забое была высокой для обеспечения скорого снижения угнетающего давления. При выборе величины показателя фильтрации следует руководствоваться правилом: скорость фильтрации промывочной жидкости должна резко снижаться с течением времени до нуля, обеспечивая при этом интегральную величину показателя фильтрации за 30 мин.

Увеличение показателя фильтрации приводит к снижению устойчивости горных пород стенки скважины из-за стимулирования развития сдвигового разрушения жидкостью.

ЗАКЛЮЧЕНИЕ

Механический способ разрушения горных пород при бурении скважин к настоящему времени далеко себя не исчерпал. Его дальнейшее развитие связано как с совершенствованием бурового инструмента, повышением эффективности разрушения горной породы ударной нагрузкой, вдавливанием, сдвигом, применением новых износостойких материалов, так и с совершенствованием технологии бурения.

Повышение эффективности разрушения горных пород на забое скважины следует связывать со способностью инструмента усиливать естественное развитие остаточной деформации в горной породе под пятном контакта, с возможностью создания сдвиговой неустойчивости горных пород забоя скважины, с совершенствованием очистки забоя от разрушенной горной породы.

СПИСОК ЛИТЕРАТУРЫ

1. Баклашов И.В., Картозия Б.А. Механика горных пород. - М.: Не-дра. - 1975.

2. Войтенко В.С. Управление давлением при бурении скважин. - М.: Недра. - 1986.

3. Ганджумян Р.А., Калинин А.Г., Никитин Б.А. Инженерные расчеты при бурении скважин: Справочное пособие / Под ред. А.Г.Ка-линина. - М.: Недра, 2000.


Подобные документы

  • Технология бурения нефтяных и газовых скважин. Закономерности разрушения горных пород. Буровые долота. Бурильная колонна, ее элементы. Промывка скважины. Турбинные и винтовые забойные двигатели. Особенности бурения скважин при равновесии "скважина-пласт".

    презентация [1,5 M], добавлен 18.10.2016

  • Применяемое буровое оборудование и режимные параметры при разрушении горных пород. Характеристика термодинамических параметров зарядов промышленных взрывных веществ. Расчет параметров взрывных работ для рыхления пород при бурении в блоках на карьере.

    курсовая работа [494,0 K], добавлен 02.06.2014

  • Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

    отчет по практике [2,0 M], добавлен 20.03.2012

  • Описание содержания и структуры курсовой работы по бурению нефтяных и газовых скважин. Рекомендации и справочные данные для разработки конструкции скважины, выбора режима бурения, расхода промывочной жидкости. Разработка режима цементирования скважины.

    методичка [35,5 K], добавлен 02.12.2010

  • Определение твердости горной породы, коэффициента пластичности и работы разрушения, осевой нагрузки на долото при бурении из условия объемного разрушения горной породы, мощности, затрачиваемой лопастным долотом. Механические характеристики горных пород.

    контрольная работа [198,3 K], добавлен 01.12.2015

  • Исследование основных способов бурения нефтяных и газовых скважин: роторного, гидравлическими забойными двигателями и бурения электробурами. Характеристика причин и последствий искривления вертикальных скважин, естественного искривления оси скважин.

    курсовая работа [2,0 M], добавлен 15.09.2011

  • Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.

    курсовая работа [1,9 M], добавлен 07.07.2015

  • Образование нефтяных и газовых месторождений в складках слоев горных пород. Стратиграфическая шкала осадочных пород, моделирование внешней формы залежи. Осуществление разделения продукции скважин в сепараторах. Основные элементы, обеспечивающие сепарацию.

    контрольная работа [75,3 K], добавлен 13.05.2011

  • Температура образования метаморфических горных пород. Потенциальные и оптимальные дебиты скважин. Насосно-компрессорные трубы (НКТ) для перемещения внутри колонн газов, жидкостей во время применения газовых и нефтяных скважин. Резьбовые скрепления (НКТ).

    контрольная работа [18,7 K], добавлен 11.12.2010

  • Использование при бурении нефтяных и газовых скважин в глубоководных районах морей и океанов плавучих буровых установок, способных самостоятельно или с помощью буксиров менять районы бурения. Самоподъемная, полупогружная и гравитационная платформа.

    реферат [160,7 K], добавлен 01.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.