Вычисление радиальных функций Матье-Ханкеля
Условия возникновения и особенности вычисления функций Матье, характеристика дифференциального уравнения Матье. Алгоритм решения задачи и алгоритмы вычисления радиальных функций эллиптического цилиндра. Определение точности результатов вычисления.
Рубрика | Математика |
Вид | научная работа |
Язык | русский |
Дата добавления | 02.05.2011 |
Размер файла | 73,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Вычисление радиальных функций матье-ханкеля
Н.И. Волвенко, V курс, Институт математики и компьютерных наук ДВГУ, Т.В. Пак - научный руководитель, доцент, к.ф.-м.н., и.о. зав. кафедрой КТ
Функции Матье, в отличие от широко известных специальных функций, таких как полиномы Лежандра, функции Бесселя и Неймана, изучены ещё недостаточно полно. Почти все используемые методы расчёта связаны с разложением в ряды по более простым цилиндрическим и т.п. функциям. Недостаток таких методов в том, что они достаточно громоздки и имеют ограниченную применимость.
Функции Матье возникают при разделении переменных в уравнении Гельмгольца:
, (1)
где - некоторая вещественная положительная константа и - оператор Лапласа.
Эллиптические координаты , допускающие разделение переменных связаны с декартовыми: , .
Полагая в методе разделения переменных, получаем уравнения:
, ,
где - константа разделения. Эти уравнения являются вариантами уравнений Матье.
Дифференциальное уравнения Матье имеет вид
, (2)
где обычно переменная имеет вещественное значение, а - заданный вещественный ненулевой параметр.
Собственные значения и граничные условия
(3)
соответствуют чётным функциям Матье , а собственные значения и граничные условия
(4)
нечётным функциям Матье
В силу свойств симметрии уравнение (2) имеет 4 типа периодических решений, называемых функциями Матье 1-ого рода: чётную р-периодическую, чётную 2р-периодическую, нечётную 2р-периодическую, нечётную р-периодическую функции, которые чаще всего обозначаются таким образом: , , , .
Собственные значения , отвечающие функциям , , , , обозначаются через , , , .
Модифицированное уравнение Матье
(5)
получается из уравнения Матье (2) подстановкой . В зависимости от того, будет в (5) или , это уравнение имеет либо решение , либо решение , которые являются соответственно чётной и нечётной функциями от о.
Функции, являющиеся решениями уравнения (5), называются радиальными функциями Матье (РФМ).
Различают РФМ 1, 2, 3 и 4 рода: , , , .
Вычисление функций Матье I рода
Радиальные функции Матье первого рода являются решениями ОДУ второго порядка
, (6)
удовлетворяющие в нуле условию
, если (7)
, если
И на бесконечности условию
~, (8)
где - задано, а () - собственные значения задачи (2), (3), (4),
Параметр используются для различия случаев использования чётного или нечётного номера собственного значения для р и 2р периодических собственных функций:
Для решения задачи (6)-(8) используем модификацию метода фазовых функций.
Введём замену переменных:
(9)
(10)
Здесь - "масштабирующая" функция, положительная на , удовлетворяющая условию при , её выбор находится в нашем распоряжении.
Подставляя (9), (10) в исходное уравнение (6) задачи для и :
(11)
(12)
где и .
Для совместного решения задач Коши для и используется следующий приём. Функцию ищем в точках . На каждом из отрезков вспомогательные функции находятся, как решение задач Коши
(13)
где .
Поскольку для любых решений и , уравнений (12) и (13) справедливо соотношение , получаем рекуррентные формулы «назад» для вычисления , ,
, , (14)
причём .
Итак, краткий алгоритм решения задачи (6)-(8) состоит в следующем:
1. Решаются совместно задачи Коши (11), (12) запоминая в точках разбиения отрезка величины , , ;
2. Полагая , по формуле (14) вычисляем , ;
3. По формуле (10) вычисляем функции , ;
4. Из (9) и (10) получаем выражение для производной функции
.
В качестве сглаживающей функции предлагается следующая функция
, где .
Вычисление функций Матье III рода
Волновая радиальная функция Матье-Ханкеля третьего рода является решением обыкновенного дифференциального уравнения второго ворядка на полубесконечном интервале:
, . (15)
Условие на бесконечности
~, . (16)
Для уравнения (15) условие (16) эквивалентно условию:
,
и при достаточно больших линейному соотношению:
, .
(17)
Решение задачи (17) существует, единственно и при достаточно больших представимо асимптотическим рядом .
Рассмотрим алгоритм нахождения функций . Для их вычисления нужно перенести граничное условие
,
где , справа налево от точки до точки .
Воспользуемся вариантом ортогональной дифференциальной прогонки.
По всему отрезку переносим соотношение
,
потребовав выполнение условия для всех , , где и удовлетворяют системе дифференциальных уравнений 1-ого порядка
.
Функции Матье 3-его рода ищем по формуле:
,
где .
Функции Матье 2-ого рода вычисляются по формуле:
.
функция матье дифференциальное уравнение
Описанные алгоритмы вычисления радиальных функций эллиптического цилиндра опробованы в широком диапазоне изменения параметров. Точность результатов определяется точностью используемого метода Рунге-Кутта для решения соответствующих задач Коши.
Литература
1. Абрамов А.А., Дышко А.Л., Пак Т.В. и др. Численные методы решения задач на собственные значения для систем обыкновенных дифференциальных уравнений с особенностями. - Третья конференция по дифференциальным уравнениям и приложениям. - Тезисы докладов. Руссе, Болгария, 1985. - с.4.
2. Миллер У. мл. Симметрия и разделение переменных / Пер. с англ. - М.: Мир, 1981. - 342 с.
3. Справочник по специальным функциям с формулами, графиками таблицами. / Под редакцией М. Абрамовица, И. Стигана. - М. - 1979. - 832 с.:ил.
Размещено на Allbest
Подобные документы
Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа [617,2 K], добавлен 08.07.2011Первообразная и неопределённый интеграл. Описание вычисления неопределенного интеграла в системе Mathcad, его свойства. Примеры вычисления функций в системе Mathcad. Вычисление значения результирующей функции. Подведение функций под знак дифференциала.
курсовая работа [454,6 K], добавлен 24.12.2012Вычисление пределов функций, производных функций с построением графика. Вычисление определенных интегралов, площади фигуры, ограниченной графиками функций. Общее решение дифференциального уравнения, его частные решения. Исследование сходимости ряда.
контрольная работа [356,6 K], добавлен 17.07.2008Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа [81,9 K], добавлен 29.08.2010Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа [283,1 K], добавлен 01.03.2011Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Определение экстремума функционала при определенных заданных условиях. Особенности вычисления гамма-функции. Вычисление значения и решение неоднородного линейного разностного уравнения с постоянными коэффициентами, специфика выполнения проверки решения.
контрольная работа [53,9 K], добавлен 27.09.2011Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.
презентация [142,0 K], добавлен 18.04.2013Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций [119,3 K], добавлен 21.04.2009