Соотношение между сторонами и углами прямоугольного треугольника
Ознакомление с понятиями синуса, косинуса, тангенса острого угла прямоугольного треугольника и основным тригонометрическим тождеством. Нахождение площади равнобедренного прямоугольного треугольная по заданному основанию и прилегающему к нему углу.
Рубрика | Математика |
Вид | конспект урока |
Язык | русский |
Дата добавления | 17.05.2010 |
Размер файла | 67,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Конспект урока по геометрии для 8 класса средней общеобразовательной школы
Тема урока: Соотношение между сторонами и углами прямоугольного треугольника
Цели:
· образовательная: 1) формирование умений и навыков в применении соотношений между сторонами и углами прямоугольного треугольника; 2) формирование умений работать с задачей.
· развивающая: развитие памяти, мышления, наблюдательности, внимательности; развитие познавательного интереса;
· воспитательная: воспитание самостоятельности, аккуратности, умения отстаивать свою точку зрения, умения выслушать других.
Тип урока: формирование умений и навыков.
Методы обучения: обобщенно-репродуктивный, эвристическое обобщение.
Требования к знаниям и умениям учащихся: знать, что такое синус, косинус, тангенс острого угла прямоугольного треугольника, основное тригонометрическое тождество, значения синуса, косинуса и тангенса табличных углов; уметь решать задачи по данной теме.
Оборудование: линейка.
План урока
1. Организационный момент (2 мин)
2. Актуализация опорных знаний и умений (15 мин)
3. Формирование умений применять соотношения между углами и сторонами прямоугольного треугольника (25 мин)
4. Подведение итогов работы на уроке (2 мин)
5. Задание на дом (1 мин)
Ход урока
I. Организационный момент
Приветствие, проверка отсутствующих, сбор тетрадей с домашним заданием.
II. Актуализация опорных знаний и умений
Учитель: На сегодняшнем уроке мы продолжим решение задач по теме "Соотношение между сторонами и углами прямоугольного треугольника". Но сначала повторим основные определения.
Фронтальный опрос:
1) Что называется синусом острого угла прямоугольного треугольника?
(Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.)
2) Что называется косинусом острого угла прямоугольного треугольника?
(Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.)
3) Что называется тангенсом острого угла прямоугольного треугольника?
(Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.)
4) Какое равенство связывает синус, косинус и тангенс острого угла прямоугольного треугольника?
()
5) Чему равен
()
6) Назовите основное тригонометрическое тождество?
()
Учитель: А теперь решим одну устную задачу.
Запись на доске: Найдите площадь равнобедренного прямоугольного треугольника с основанием 10 см и углом при основании .
Учитель: С чего начнем решение данной задачи?
Ученики: Для начала определим, по какой формуле будем искать площадь треугольника.
Учитель: Правильно. Обратим внимание на то, что этот треугольник не обычный, а во-первых, равнобедренный, во-вторых, прямоугольный.
Ученики: Площадь прямоугольного треугольника равна половине произведения его катетов.
Учитель: Хорошо. Теперь будем искать катеты.
Ученики: Так как треугольник равнобедренный, то достаточно найти только один катет, например . Катет можно найти из соотношения между острым углом, катетом и гипотенузой прямоугольного треугольника.
Запись на доске: .
Ученики: Затем и данной формулы выразим катет .
Запись на доске: .
Ученики: Гипотенуза
, а .
Запись на доске:
.
Ученики: Площадь треугольника равна
.
Запись на доске
.
III. Формирование умений применять соотношения между углами и сторонами прямоугольного треугольника
Учитель: А теперь приступим к решению задач. На доске записаны задачи, которые необходимо решить в классе. Открывайте тетради, записывайте число и тему урока.
Запись на доске: № 600, 601, 602.
Запись на доске и в тетрадях: Число.
Соотношение между сторонами и углами прямоугольного треугольника.
Учитель: Задачи будем решать около доски.
№ 600. Насыпь шоссейной дороги имеет в верхней части ширину 60 м. Какова ширина насыпи в нижней ее части, если угол наклона откосов к горизонту равен , а высота насыпи равна 12 м (рис. 209).
Дано:- равнобедренная трапеция, , , .
Найти: .
Решение:
1) Рассмотрим прямоугольный треугольник : , . Необходимо найти катет . Какое соотношение связывает два катета и острый угол?
; .
2) . Так как треугольники и равны, то , значит
.
Ответ:
.
№ 601. Найдите углы ромба, если его диагонали равны и 2.
Дано: - ромб, , .
Найти:
Решение:
1) В ромбе противолежащие углы равны, значит
2) Т.к. ромб является параллелограммом, значит (диагонали параллелограмма точкой пересечения делятся пополам),
.
3) Аналогично,
.
4) .
5)
.
Ответ: .
№ 602. Стороны прямоугольника равны 3 см и см. Найдите углы, которые образует диагональ со сторонами прямоугольника.
Дано: .
Найти: .
Решение:
1)
.
2)
Ответ:
IV. Подведение итогов работы на уроке
Учитель: Итак, на сегодняшнем уроке мы сформировали умения и навыки в применении соотношений между сторонами и углами прямоугольного треугольника, закрепили умения решать задачи по данной теме. На следующем уроке мы продолжим изучение темы: "Соотношение между сторонами и углами прямоугольного треугольника".
V. Задание на дом
Учитель: Откройте дневники и запишите задание на дом. Оно записано на доске.
Запись на доске: §4 п.66, 67, вопросы 15-18 стр. 154; № 599.
Литература
1) Атанасян Л.С. Геометрия 7-9
2) Саранцев Г.И. Методика обучения математике в средней школе
3) Мишин В.И. Частная методика преподавания математики в средней школе
Подобные документы
Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.
презентация [11,6 M], добавлен 04.04.2019Расчет площади равнобедренного и равностороннего треугольника. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Расчет размеров медианы, биссектрисы.
презентация [68,7 K], добавлен 16.04.2011Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.
курс лекций [3,7 M], добавлен 23.04.2011Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.
презентация [174,3 K], добавлен 18.12.2012Геометрическая фигура, образованная тремя фигурами, которые соединяют три не лежащие на одной прямой точки. Основные формулы площади треугольника. Решение задач на нахождение площади треугольника через две его стороны и высоту, проведенную к основанию.
презентация [240,0 K], добавлен 21.04.2015Перестройка структуры и содержания учебного курса математики в процессе проведения реформ математического образования. Определения косинуса, синуса и тангенса острого угла. Основные тригонометрические формулы. Понятие и основные свойства векторов.
дипломная работа [328,2 K], добавлен 11.01.2011Методика нахождения уравнения прямой исследуемого треугольника и параллельной ей стороне с использованием углового коэффициента. Определение уравнения высоты этого треугольника. Порядок и составление алгоритма вычисления площади данного треугольника.
задача [21,9 K], добавлен 08.11.2010Ознакомление с историческими сведениями, различными трактовками определения пирамиды, характеристика ее основных элементов, сечений и видов (правильная, усеченная), нахождение площади фигуры. Изучение свойств ортоцентрического и прямоугольного тетраэдров.
презентация [355,0 K], добавлен 25.05.2010Характеристика основных методов определения высоты физических тел: с помощью вращающейся планки, теней предмета и человека, зеркала, чертежного прямоугольного треугольника. Суть каждого из методов, обоснование расчетов и используемых материалов.
презентация [69,9 K], добавлен 17.04.2011Базовые основы системы mn параметров, варианты их значений. Теоремы циклов для треугольников и прямоугольного треугольника. Тайна теоремы Пифагора, предистория ее рождения. Итерационные формулы и их использование. Дисперсия точек ожидаемой функции.
статья [241,5 K], добавлен 24.11.2011