Оценка вероятностей реализации пятиэлементного сечения для стратегии параллельного восстановления
Граф состояний как направленный граф, вершины которого изображают возможные состояния системы, а ребра возможные переходы системы из одного состояния в другие. Влияние интенсивностей восстановления и отказа элементов на работоспособность всей системы.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 09.12.2015 |
Размер файла | 549,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Оценка вероятностей реализации пятиэлементного сечения для стратегии параллельного восстановления
Целью работы является оценка вероятностей реализации четырехэлементного сечения для стратегии параллельного восстановления.
При анализе изменения поведения системы в процессе использования удобно использовать граф состояний. Граф состояний - это направленный граф, вершины которого изображают возможные состояния системы, а ребра отражают возможные переходы системы из одного состояния в другие с параметрами интенсивностей отказов и восстановлений.
Для рассматриваемого пятиэлементного сечения граф состояний имеет следующий вид:
0 - работоспособное состояние.
1-5 - состояния с отказом одного элемента с соответствующим номером.
6-15 - состояния с попарным отказом элементов 1 и 2, 1 и 3, 1 и 4, 1 и 5, 2 и 3, 2 и 4, 2 и 5, 3 и 4, 3 и 5, 4 и 5.
16-25 - состояния с отказом трех элементов: 1, 2 и 3; 1, 2 и 4; 1, 2 и 5; 1, 3 и 4; 1, 3 и 5; 1, 4 и 5; 2, 3 и 4; 2, 3 и 5; 2, 4 и 5; 3, 4 и 5.
26-30 - состояния с отказом четырех элементов: 1, 2, 3 и 4; 1, 2, 3 и 5; 1, 2, 4 и 5; 1, 3, 4 и 4; 2, 3, 4 и 5.
31 - состояние отказа всех элементов системы.
При этом - интенсивность отказа i-го элемента, - интенсивность восстановления i-го элемента.
Система дифференциальных уравнений Колмогорова-Чепмена для рассматриваемого случая имеет вид:
Решим полученную систему дифференциальных уравнений с помощью пакета Mathcad:
При:
получаем график решений системы дифференциальных уравнений:
При:
получаем график решений системы дифференциальных уравнений:
При:
получаем следующий график решений дифференциальных уравнений:
граф ребро пятиэлементный сечение
при интенсивностях восстановления, больших интенсивностей отказа, получаем наибольшую вероятность нахождения системы в полностью работоспособном состоянии. При этом вероятности состояний, в которых выходит из строя хотя бы один элемент, незначительно меньше.
Вывод: в ходе выполнения лабораторной работы была произведена оценка вероятностей реализации пятиэлементного сечения для стратегии параллельного восстановления.
Анализ проводился с помощью графа состояний, на основе которого была получена и решена система дифференциальных уравнений. В результате решения системы было исследовано влияние интенсивностей восстановления и отказа элементов на работоспособность всей системы.
Размещено на Allbest.ru
Подобные документы
Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.
контрольная работа [84,5 K], добавлен 20.07.2010Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.
курсовая работа [225,5 K], добавлен 14.05.2012Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы.
контрольная работа [71,2 K], добавлен 08.09.2010Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат [131,8 K], добавлен 11.11.2008Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.
реферат [55,7 K], добавлен 26.01.2009Системная модель сложной организационной системы "Неврологическая лечебно-диагностическая клиника". Алгебраический и итерационный метод восстановления функций по их проекциям. Решение задачи восстановления функции с носителем в круге и в эллипсе.
дипломная работа [4,1 M], добавлен 21.08.2011Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.
курсовая работа [745,4 K], добавлен 17.12.2009Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.
контрольная работа [98,1 K], добавлен 15.06.2012Особенности использования теории вероятностей в сфере транспорта. Сравнительный анализ вероятностей катастрофы летательного аппарата: постановка задачи и ее математическая интерпретация. Определение надежности элементов системы энергоснабжения самолета.
контрольная работа [130,6 K], добавлен 11.09.2014