Решение неоднородной задачи Дирихле для уравнения Лапласа методом R-функций
Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
Рубрика | Математика |
Вид | практическая работа |
Язык | русский |
Дата добавления | 28.01.2014 |
Размер файла | 332,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Пьер-Симон Лаплас - выдающийся французский математик, физик и астроном, один из создателей теории вероятностей. Уравнение Лапласа в двумерном пространстве. Способы трехмерного уравнения Лапласа. Особенности решения задачи Дирихле в круге методом Фурье.
курсовая работа [271,8 K], добавлен 14.06.2011Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа [132,2 K], добавлен 25.11.2011Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.
курсовая работа [323,4 K], добавлен 25.11.2011Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.
курсовая работа [294,7 K], добавлен 17.06.2014Аналитическое решение уравнения для вынужденных поперечных колебаний консольного стержня. Численное решение уравнения с помощью метода "бегущего счёта". Вывод уравнения движения из основных законов физики. Построение дискретной модели и выбор сетки.
курсовая работа [1,0 M], добавлен 25.02.2013Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа [366,5 K], добавлен 28.07.2013Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка [335,0 K], добавлен 02.03.2010Характеры и L-функции Дирихле, функциональное уравнение. Аналитическое продолжение L-функции Дирихле на комплексную плоскость; тривиальные и нетривиальные нули. Теорема Вейерштрасса о разложении в произведение целых функций. Обобщенная гипотеза Римана.
реферат [573,1 K], добавлен 15.06.2011Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.
курсовая работа [135,1 K], добавлен 06.05.2011Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика.
курсовая работа [721,0 K], добавлен 27.05.2008