Контрпримеры в курсе математического анализа

Рассмотрение примеров задач и теорем, доказываемых при помощи контрпримера. Применение терминов "производная" и "дифференцируемая функция". Построение немецким математиком Вейерштрассом первого примера непрерывной нигде не дифференцируемой функции.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 07.10.2013
Размер файла 400,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.

    курсовая работа [1,1 M], добавлен 24.06.2015

  • Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.

    курсовая работа [44,8 K], добавлен 23.11.2011

  • Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.

    конспект урока [147,7 K], добавлен 23.10.2013

  • Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.

    контрольная работа [565,5 K], добавлен 16.11.2010

  • Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка [42,3 K], добавлен 21.08.2009

  • Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.

    контрольная работа [1,1 M], добавлен 26.03.2014

  • Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.

    контрольная работа [295,5 K], добавлен 24.03.2009

  • Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.

    контрольная работа [297,6 K], добавлен 11.05.2013

  • Введение в математический анализ. Индивидуальные домашние задания по теме "Предел функции и непрерывность» и по теме "Производная". Комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Применение производной при исследовании функции.

    учебное пособие [950,8 K], добавлен 25.08.2009

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа [612,2 K], добавлен 01.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.