• Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".

    научная работа (858,3 K)
  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа (157,5 K)
  • Изучение способов приближенного решения уравнений с помощью графического изображения функций. Исследование метода определения действительных корней квадратного уравнения с помощью циркуля и линейки для приведенных семи уравнений, построение их графиков.

    творческая работа (12,5 M)
  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа (151,3 K)
  • Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.

    курсовая работа (192,5 K)
  • Симплекс как геометрическая фигура, являющаяся мерным обобщением треугольника. Математика и её место в жизни человека. Алгоритм решения задачи "нахождение наименьшего значения линейной функции симплексным методом". Составление начальной симплекс таблицы.

    контрольная работа (484,7 K)
  • Классификация способов нахождения обратной матрицы, полученной в системе MathCAD с помощью миноров и алгебраических дополнений: разбиения ее на клетки и на произведение 2-х треугольных матриц; с помощью модели Гаусса. Вычисление погрешности методов.

    лабораторная работа (380,9 K)
  • Принцип работы формирователя остатка по модулю 3. Выбор и обоснование схемы электрической функциональной и принципиальной. Микросхема типа К155ЛП5. Конструирование плат ячеек, выбор конструкционной единицы. Расчет быстродействия и потребляемой мощности.

    курсовая работа (487,8 K)
  • Построение теоретико-вероятностной модели исследуемого явления случайной величины математическими выводами. Реализация выборки статистической моделью, описывающей серию опытов. Точечная (выборочная) оценка неизвестного параметра и кривая регрессии.

    курсовая работа (311,7 K)
  • Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.

    контрольная работа (130,5 K)
  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа (253,6 K)
  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа (1,2 M)
  • Задачи нахождения собственных значений и соответствующих им собственных векторов. Математическое обоснование метода итераций. Алгоритм метода Леверрье-Фаддеева, численное решение оценки собственных значений матриц. Листинг программы на языке "Pascal".

    курсовая работа (221,8 K)
  • Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.

    презентация (55,2 K)
  • Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.

    курсовая работа (318,4 K)
  • Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.

    учебное пособие (8,1 M)
  • Поняття та способи розв’язку невласного подвійного інтегралу. Теорема про абсолютну збіжність невласного подвійного інтеграла. Інтеграли від необмежених функцій. Приведення подвійного інтеграла до повторного. Заміна змінних в невласних інтегралах.

    курсовая работа (782,9 K)
  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация (993,0 K)
  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат (319,1 K)
  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья (6,1 K)
  • Независимость событий. Условная вероятность. Независимость событий и испытаний. События А и В называются независимыми, если Р(АВ) = Р(А). Если Р(В)>0, то независимость А и В эквивалентна равенству Р(А/В) = Р(А).

    реферат (20,4 K)
  • Сущность вероятностной задачи-схемы независимых испытаний швейцарского профессора математики Я. Бернулли. Пример решения задачи по формуле Бернулли. Применение методов теории вероятностей в различных отраслях естествознания, техники и прикладных науках.

    презентация (301,3 K)
  • Формула Бернуллі та її використання при невеликому числі випробувань. Застосування локальної формули Муавра-Лапласа при необмеженому зростанні числа випробувань, коли ймовірність настання події не занадто близька до нуля або одиниці. Формула Пуассона.

    курсовая работа (256,9 K)
  • Изучение человеческого мозга. История изучения и создания нейронных сетей. Биологический и искусственный нейрон. Выбор структуры нейросети. Грамотное обучение искусственных нейронных сетей и их применение, программные модели искусственных нейросетей.

    курсовая работа (89,2 K)
  • Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

    дипломная работа (1,3 M)
  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа (3,1 M)
  • Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.

    курсовая работа (289,9 K)
  • Определение линейного оператора. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора. Обратный оператор. Спектр оператора и резольвента. Операторы: умножения на непрерывную функцию; интегрирования; сдвиг

    дипломная работа (267,4 K)
  • Понятие матрицы, эллипса, гиперболы и параболы. Системы уравнений с матрицами. Проекция вектора на ось и действия с векторами. Плоскость и прямые линии в пространстве, их взаимное расположение. Прямоугольная декартова система координат на плоскости.

    контрольная работа (98,8 K)
  • Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.

    курсовая работа (1,0 M)