• Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

    лабораторная работа (22,3 K)
  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа (481,0 K)
  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация (525,7 K)
  • Особенности построения вектора А, удовлетворяющего заданному множеству условий и ограничений, если даны величины упорядоченных множеств. Характеристика алгоритма перебора вектора А и оценка его временной сложности. Анализ графического изображения вектора.

    курсовая работа (164,1 K)
  • Статистичний критерій перевірки нульової гіпотези. Критична область і загальна методика її побудови. Перевірка правдивості статистичних гіпотез про рівність двох генеральних середніх. Закон розподілу генеральної сукупності. Критерій узгодженості Пірсона.

    реферат (145,1 K)
  • Перевод мер угла в градусной системе. Соотношения между градусной и часовой системами счисления. Перевод меры угла из классического вида в секунды, в десятичный и наоборот. Алгоритм (правила) и методы его перевода. Перевод мер угла в часовой системе.

    контрольная работа (50,1 K)
  • Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.

    реферат (67,2 K)
  • Расчет передаточной функции разомкнутой системы, передаточные функции замкнутой системы по заданию, по возмущению, по ошибке для одноконтурной АСР с дифференциальным уравнением объекта управления. Структурная схема объекта и расчет устойчивости системы.

    контрольная работа (545,7 K)
  • Переключательные функции одного аргумента. Переключательные функции двух аргументов. Представление переключательной функции в виде многочленов. Совершенная дизъюнктивная нормальная форма переключательной функции. Функция в виде полинома Жегалкина.

    реферат (45,6 K)
  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат (5,4 M)
  • Перетворення Фур'є як самостійна операція математичного аналізу. Амплітудний і фазовий спектри розкладу інтегралу Фур'є для заданої неперіодичної функції. Комплексна форма інтеграла Фур'є. Спектральна характеристика (щільність) неперіодичної функції.

    курсовая работа (235,5 K)
  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация (2,2 M)
  • Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.

    презентация (2,4 M)
  • Доказательство теоремы о том, что любая точка перпендикуляра, проходящего через середину данного отрезка, равноудалена от его концов, и что если данная точка равноудалена от концов отрезка, то она лежит на прямой, перпендикулярной данному отрезку.

    презентация (71,5 K)
  • Площина як одне з основних понять геометрії, її розміщення у просторі. Поняття взаємно перпендикулярних площин. Огляд прикладів вирішення задачі на побудову двох паралельних площин. Теореми, що використовуються при розв’язанні позиційних задач на цю тему.

    контрольная работа (451,5 K)
  • Теорема о проецировании прямого угла, возможные три случая такого проецирования. Главные линии плоскости: линии уровня и линии наибольшего наклона. Прямая, перпендикулярная к плоскости и ее проекции. Условие взаимной перпендикулярности двух плоскостей.

    реферат (463,3 K)
  • Перпендикулярные прямые в пространстве. Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Параллельные прямые, перпендикулярные к плоскости. Признаки перпендикулярности плоскостей. Построение перпендикуляра в многомерных пространствах.

    презентация (1,6 M)
  • Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.

    презентация (160,5 K)
  • История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.

    презентация (2,7 M)
  • Египетские пирамиды как одно из семи чудес света. Пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе. Геометрическая форма строений. Апофема и свойства правильной пирамиды. Сущность понятия "тетраэдр". Площадь полной и боковой поверхности, объем, теорема.

    презентация (3,1 M)
  • Правильная пирамида. Сечение пирамиды, проходящее через вершину и диагональ основания. Ось правильной пирамиды. Апофема пирамиды. Усеченная пирамида. Боковые грани правильной усеченной пирамиды. Боковое ребро пирамиды.

    доклад (7,8 K)
  • Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. История развития пирамиды; виды, элементы, углы, развёртка, свойства; теоремы, связывающие ее с другими геометрическими телами; формулы.

    презентация (280,4 K)
  • По заданным координатам пирамиды, ее основанию и высоте нахождение длины ребер и угла между ними, площадь основания и объем пирамиды, проекцию вершины на плоскость, длину высоты. Расчет угла наклона ребра к основанию пирамиды. Построение чертежа.

    контрольная работа (66,3 K)
  • Алгоритма решения диофантовых уравнений. Системный анализ свойств пифагоровых троек. Разработка способов и алгоритмов вычисления пифагоровых троек вида х2=у2+z2. Графические модели, отображающие каждый член пифагоровой тройки в виде составных квадратов.

    статья (793,0 K)
  • Поняття збіжного числового ряду. Підсумовуючі функції, лінійність та регулярність підсумовування розбіжних рядів за Пуассоном-Абелем. Різниця між абсолютною та умовною збіжністю. Співвідношення між підсумовуванням за Чезаро і за Пуассоном-Абелем.

    курсовая работа (746,1 K)
  • Основні поняття з теорії рядів, характеристика методів підсумовування збіжних рядів. Особливості лінійних перетворень рядів, суть методів Ейлера, Куммера, Пуассона і Чезаро. Поняття суми розбіжного ряду, що задовольняє умовам регулярності і лінійності.

    дипломная работа (2,1 M)
  • Геометрія та пізнання всього існуючого. Найбільш приголомшуючі знахідки минулого століття. Піраміди в космосі і американський космічний апарат. Історична цінність пірамід і їх будова, нейтралізування негативної енергії і перетворення її в позитивну.

    презентация (6,2 M)
  • Призначення пірамід у Давньому Єгипті, їх таємниця та особливості будівництва. Піраміда Хеопса як одне з семи чудес світу. Роль піраміди як стабілізатора параметрів у русі планети. Основні розрахункові формули та визначення стосовно піраміди в геометрії.

    презентация (3,5 M)
  • Сущностные характеристики плоского и планарного графа. Основные особенности формулы Эйлера и критерия Понтрягина-Куратовского, их доказательства. Общая характеристика двух критериев планарности. Сущность и значение процесса применения гамма-алгоритмов.

    реферат (148,8 K)
  • Планирование эксперимента и факторы параметра оптимизации. Математическая модель и матрица планирования, коэффициенты уравнения регрессии и абсолютная величина доверительного интервала. Имитационный эксперимент и дифференциальные уравнения колебаний.

    курс лекций (240,8 K)