Площади плоских фигур в курсе геометрии основной школы

Этапы работы с площадями в основной школе и анализ учебников. Основные дидактические функции задач по теме "Площади фигур" и методика их реализации в процессе обучения в 5-9 классах. Опытная проверка разработанных материалов и оценка результатов.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 05.11.2011
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ ГОРОДСКОЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ТЕОРИИ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ В ШКОЛЕ

ДИПЛОМНАЯ РАБОТА

по теме: "ПЛОЩАДИ ПЛОСКИХ ФИГУР В КУРСЕ ГЕОМЕТРИИ ОСНОВНОЙ ШКОЛЫ"

студентки 5 курса

Емашовой Н.С.

Научный руководитель:

кандидат педагогических наук,

профессор Захарова А.Е.

Москва

2011

Содержание

Введение

Глава 1. Научно-методические основы изучения площадей плоских фигур в основной школе

1.1 Основы теории площадей

1.2 Этапы работы с площадями в основной школе

1.3 Анализ школьных учебников

1.4 Психолого-педагогические основы обучения по теме "Площади фигур"

Глава 2. Основные дидактические функции задач по теме "Площади фигур" и их реализация в учебном процессе

2.1 Сборник задач "на площади". Типология задач сборника

2.2 Основные функции задач "на площади" и методика их реализации в процессе обучения в 5-9 классах

2.3 Опытная проверка разработанных материалов и анализ результатов

Заключение

Список литературы

Введение

Обучение математике в школе призвано развивать познавательные и творческие способности каждого ребенка, его интеллект, культуру и должно быть направлено на развитие личности школьника. Изучение математики вооружает учащихся конкретными математическими знаниями, необходимыми в практической деятельности, а также при изучении смежных дисциплин. Изучение математики способствует становлению гуманитарной культуры человека, раскрывает представление о том, что математика - часть общечеловеческой культуры.

В связи с этим одной из основных целей обучения математике (в частности, геометрии) является привитие учащимся интереса к этому предмету, используя особенности самой математики. Особая роль здесь отводится задачам, которые призваны возбудить у учащихся интерес к изучаемому предмету, стимулирующим познавательную активность школьников и оказывающим эстетическое воздействие на них.

Чтобы заинтересовать школьников, привлечь их внимание к геометрии, к процессу решения геометрических задач, к процессу геометрического творчества, необходимо показать этот предмет во всем его многообразии, акцентируя внимание на интересных, занимательных моментах. Важно учесть при этом, что у одних школьников интерес вызывает поиск результата, у других - обоснование, у третьих - поиск неординарного, оригинального решения. Один из возможных путей удовлетворения указанных требований - создание специального сборника задач по одному из вопросов курса геометрии. Важно при этом, чтобы задачи сборника были упорядочены (по каким-то принципам) и могли выполнять различные дидактические, развивающие и воспитательные функции. Именно этой проблеме и посвящена данная работа. Ведь воспитание познавательного интереса у школьников - одно из важнейших условий эффективности учебного процесса.

Большими возможностями в этом плане обладает тема "Площади фигур". Тема "Площади фигур" заключена в рамках содержательно-методической линии "Геометрические фигуры. Измерение геометрических величин", но вместе с тем, эта тема имеет непосредственную связь и с другими содержательными линиями школьного курса математики.

Выбор данной темы не случаен: она способна "вобрать" в себя большой теоретический и практический материал, который накапливают школьники ко времени изучения данной темы и, кроме того, располагает огромными возможностями по формированию системы знаний, умений и навыков решения различных типов задач, творческого мышления и интуиции учащихся; способствует развитию интеллекта, мировоззрения, нравственных качеств учащихся при решении планиметрических задач непосредственно на уроках и во внеклассной работе. Здесь можно предложить учащимся и задачи на непосредственное измерение площадей, и на вычисление площадей с помощью формул (опосредованное измерение), и всевозможные задачи на разрезание и перекраивание фигур, на конструирование из бумаги, и задачи на равновеликие и равносоставленные фигуры, и наконец, задачи с привлекательным чертежом, условием и т.д. Ведь школьникам особенно нравится, если условия задач имеют занимательную форму.

Выбор темы "Площади фигур" обусловлен также и иными причинами. Во-первых, эта тема имеет важное историческое значение для математики как науки: само слово "геометрия" в переводе с греческого означает "землемерие" ("гео" - по-гречески земля, а "метрео" - мерить). Во-вторых, площади находят широкое применение при изучении других тем курса геометрии, а также алгебры, физики, химии, географии, экологии и т.д. Ведь с помощью площадей можно по-иному доказать уже изученные геометрические факты, теоремы. Площади дают также метод решения задач, основанный на применении свойств площадей и формул для вычисления площадей тех или иных геометрических фигур, и именуемый методом площадей. В-третьих, данная тема имеет самую непосредственную связь с практической деятельностью людей. Ведь, действительно, мы сталкиваемся с площадями на каждом шагу: это и площади наших квартир, и все, что касается ремонта квартир также основывается на этом понятии (сколько квадратных метров керамической плитки необходимо купить, чтобы выложить ею ванную комнату, сколько рулонов обоев необходимо затратить на оклейку комнаты и т.д.). Площади находят непосредственное применение в быту, в технике, строительстве, искусстве и т.д.

Но при всей важности понятия "площадь", при всей его применимости, мало кто сможет ответить на вопрос "Что такое площадь?". Этот факт подтвердил опрос, проведенный среди студентов математического факультета. Если студенты не смогли четко ответить на этот вопрос, то чего же ждать от школьников?

Такое положение с представлением о понятии "площадь плоской фигуры" объясняется, на наш взгляд, просто: в школе не ставится задача формирования понятия "площадь фигуры" (и это совершенно правильно, т.к. это понятие обладает высокой степенью абстракции и, кроме того, у школьников и не возникает потребности в этом). Учащиеся осваивают интуитивно ясные и "прозрачные" основные свойства площадей, подтверждения которым они встречали в детских играх, которые явно выделяются и формулируются в пропедевтическом курсе геометрии (5-6 классы) и воспринимаются школьниками как нечто само собой разумеющееся. Именно поэтому на первый план выступает освоение вычисления площадей плоских фигур с помощью различных формул.

Целью дипломной работы является разработка и обоснование системы задач по теме "Площади фигур", направленных на всестороннее развитие учащихся и возбуждение интереса к геометрии, а также разработка конкретных методических рекомендаций по реализации основных дидактических функций задач предлагаемого сборника.

Достижение поставленной цели потребовало решения следующих задач:

изучить имеющуюся математическую и методическую литературу с целью выявления различных задач "на площади";

осуществить соответствующую поставленной цели подборку планиметрических задач по теме "Площади фигур";

разработать методические рекомендации для реализации основных функций подобранных задач в процессе обучения в основной школе;

провести опытную проверку разработанных материалов сборника задач.

Для решения поставленных задач применялись следующие методы:

изучение и анализ математической, психолого-педагогической и методической литературы; анализ учебников и учебных пособий по математике и по геометрии основной школы; изучение и анализ нормативных документов;

опрос студентов МГПУ;

беседа с учителями математики и учениками;

экспертная оценка учителей математики;

опытная проверка, позволившая изучить состояние данного вопроса в школьной практике обучения геометрии и апробировать некоторые задачи сборника.

Дипломная работа состоит из введения, двух глав, заключения, списка литературы и приложений.

Во введении обосновывается выбор темы, постановка проблемы исследования и ее актуальность, а также формулируются цели и задачи данной работы.

В Главе 1 излагаются основы теории площадей, проводится сравнительный анализ школьных учебников по геометрии для 7-9 классов, причем как по теоретическому материалу, так и по задачному, а также анализ нормативных документов. Хотелось бы отметить, что в проведенном исследовании мы ограничились рассмотрением проблемы в общеобразовательных классах. Кроме того, здесь говорится о психологических особенностях школьников 8-9 классов, а также о соблюдении основных дидактических принципов при обучении учащихся по теме "Площади фигур".

В Главе 2 представлено описание сборника задач по теме "Площади фигур", обоснование типологии представленных в нем задач. Кроме того, в этой главе излагаются методические рекомендации по реализации основных дидактических, развивающих и воспитательных функций задач предлагаемого сборника, а также результаты опытной проверки данного сборника.

В заключении представлены основные выводы о проделанной работе.

Список использованной литературы содержит 64 наименования.

Дипломная работа содержит 3 приложения.

Глава 1. Научно-методические основы изучения площадей плоских фигур в основной школе

1.1 Основы теории площадей

Рассмотрим основные положения теории площадей.

Начнем с определения площади многоугольника. Простым многоугольником называется простая замкнутая ломаная вместе с частью плоскости, ограниченной ею. Будем рассматривать только простые многоугольники, называя их для краткости многоугольниками.

Определение: Рассмотрим множество M всех многоугольников на евклидовой плоскости. Говорят, что установлено измерение площадей многоугольников, если определено отображение S : M>R+ , удовлетворяющее следующим аксиомам:

Если многоугольники F и F' равны, то S(F)=S(F').

Если F=F1+F2 , то S(F)=S(F1)+S(F2).

S(P0)=1 , где P0 - квадрат, построенный на единичном отрезке как на стороне.

Положительное число S(F) называется мерой или площадью многоугольника F, квадрат P0- единичным квадратом, а аксиомы 1, 2 и 3 - аксиомами измерения площадей.

Теорема 1: (существования и единственности): В евклидовой геометрии всегда существует отображение S : M>R+ , удовлетворяющее аксиомам 1, 2 и 3, причем если выбран единичный отрезок, то это отображение единственное.

Следствие: При любом способе разложения многоугольника F на конечное множество треугольников сумма площадей этих треугольников одна и та же.

Замечание: В школьном курсе геометрии теорема существования и единственности площади многоугольника не доказывается. Тем не менее теория площадей, изучаемая в школе, имеет определенное значение: она, опираясь на утверждение (которое принимается без доказательства), что существует отображение S : M>R+ , удовлетворяющее аксиомам 1, 2 и 3, дает возможность вычислить площади простейших многоугольников по каким-то данным, и тем самым в школьном курсе геометрии устанавливается единственность измерения простейших многоугольников. Пусть, например, для вычисления площади многоугольника F мы разбили его на треугольники и взяли сумму площадей получившихся треугольников. Понятно, что при разных способах разбиения на треугольники мы получим один и тот же результат. Но почему? В школьной геометрии ответа на этот вопрос нет. Теорема существования и единственности дает четкий ответ: при любом разбиении многоугольника на F треугольники сумма их площадей дает однозначно определенное число S(F). Из этой теоремы, а также из аксиом площади выводятся формулы для вычисления площади любого прямоугольника, параллелограмма, треугольника.

Теорема 2: Если S : M>R+ - отображение, удовлетворяющее аксиомам 1, 2 и 3, то S(P)=xy, где P - прямоугольник, стороны которого равны x и y.

Теорема 3: Если S : M>R+ - отображение, удовлетворяющее аксиомам 1, 2 и 3, то S(T)=xy, где T - треугольник, x - одна из его сторон, а y - соответствующая высота.

Определение: Два многоугольника называются равновеликими, если их площади равны.

Ясно, что равновеликость есть отношение эквивалентности на множестве M всех многоугольников.

Определение: Два многоугольника F и F' называются равносоставленными, если их можно разложить на одно и то же число соответственно равных многоугольников.

Можно доказать, что отношение равносоставленности тоже является отношением эквивалентности на множестве M всех многоугольников.

Теорема 4: Если многоугольники равносоставлены, то они равновелики.

Замечание: На этой теореме основан метод разложения при вычислении площади многоугольника F: данный многоугольник разлагают на конечное множество многоугольников, таких, чтобы из них можно было "сложить" многоугольник, площадь которого известна. Именно таким способом в школьном курсе геометрии находят формулы для вычисления площади параллелограмма, треугольника, трапеции.

Следующее утверждение является обратным теореме 4.

Теорема 5 (Бойяи-Гервина): Если многоугольники равновелики, то они равносоставлены.

Таким образом, во множестве M всех многоугольников отношение равновеликости совпадает с отношением равносоставленности.

А как же быть с площадью произвольной фигуры, например, с площадью круга? Эта проблема возникает и при изложении материала школьной геометрии. Возникает необходимость расширить изучаемую область теории площадей, которую до сих пор составляло только множество всех многоугольников плоскости.

Определение: Фигура M называется квадрируемой, если для любого положительного числа можно подобрать такие многоугольники P и Q, что P M Q и S(Q)-S(P) .

Теорема 6: На множестве всех квадрируемых фигур существует, и притом только одна, функция S, удовлетворяющая аксиомам 1, 2 и 3 измерения площадей.

Число S(F) называется площадью фигуры F, где F- квадрируемая фигура.

Замечание: Метод вычисления площади фигуры, основанный на рассмотрении многоугольников, постепенно заполняющих всю фигуру, называется методом исчерпывания (в школьных учебниках с помощью этого метода выводится формула для вычисления площади круга и не только).

О применении палетки (непосредственное измерение площадей).

Обычно говорят, что площадь S(F) фигуры F есть число, показывающее, из скольких единиц площади составляется эта фигура (за единицу площади берется квадрат, сторона которого равна единице длины). Однако такое наглядное пояснение не может служить точным математическим определением понятия площади. Неясно, например, каким образом из единиц площади составляется круг заданного радиуса.

Один из способов определения понятия площади основывается на рассмотрении палетки - разбиения плоскости на конгруэнтные квадраты. Пусть сторона квадрата палетки имеет длину 1. Пусть дана некоторая фигура F и пусть a1-наибольшее число квадратов, целиком содержащихся в фигуре F, и b1- наименьшее число квадратов, содержащих эту фигуру целиком. Например, фигура F содержит фигуру, составленную из 9 квадратов палетки, и содержится в фигуре, составленной из 29 квадратов, поэтому 9 ? S(F) ? 29, т.е. a1=9, b1=29 (рис.1).

Для более точной оценки можно использовать палетку, квадраты которой имеют стороны длиной 1/10 (так что в каждом квадрате прежней палетки содержится 100 квадратов новой палетки). Если, скажем, F содержит фигуру, составленную из 1716 квадратов новой палетки, и содержится в фигуре, составленной из 1925 таких квадратов, то 17,16 ? S(F) ? 19,25. Еще раз, измельчая палетку (т.е. уменьшая в 10 раз длины сторон квадратов), мы сможем еще точнее оценить S(F) и т.д.

Описанный процесс измерения используется не только для нахождения площади, но и для самого определения понятия площади. Именно, рассмотрим палетку, у которой длины сторон квадратов равны 1/10k. Пусть F содержит фигуру, составленную из ak квадратов этой палетки, и содержится в фигуре, составленной из bk таких квадратов (например, выше у нас a2=1716, b2=1925). Тогда можно сказать, что ak/102k есть значение площади фигуры F с недостатком, а bk/102k - с избытком. Неограниченно увеличивая k мы можем рассмотреть пределы: (F) = , (F) = , первый из которых называется нижней, а второй - верхней площадью фигуры F.

Если фигура такова, что эти пределы совпадают при , то фигура F называется квадрируемой, т.е. (F) = (F). Это значение рассмотренных пределов называется площадью фигуры F и обозначается через S(F), т.е. .

Нетрудно привести пример фигуры, у которой верхняя и нижняя площади не совпадают. С этой целью из квадрата площади 1 удалим крест, площадь которого меньше 1/4 (рис. 2, а). Затем в каждом из четырех оставшихся квадратов удалим по кресту так, чтобы сумма площадей всех четырех крестов была меньше 1/8 (рис. 2, б). Затем удалим 16 крестов с общей площадью меньше 1/16 и т.д. Фигуру, которая останется после бесконечного числа удаления крестов, обозначим через Q. Заметим, что общая площадь всех удаленных крестов меньше чем 1/4+1/8+1/16+…+1/2n +…, т.е. меньше 1/2 .

Поэтому оставшуюся фигуру Q невозможно поместить в фигуре площади 1/2, т.е. верхняя площадь фигуры Q больше 1/2. В то же время фигура Q не содержит никакого квадрата (каким бы маленьким он ни был), и потому нижняя площадь фигуры равна нулю. Таким образом верхняя и нижняя площади фигуры не совпадают, а значит фигура Q неквадрируема.

Этот пример показывает, что понятие площади применимо не ко всякой фигуре. Однако можно доказать, что всякий многоугольник является квадрируемой фигурой. Точно также любая выпуклая фигура (в частности, круг) квадрируема. И, вообще, класс квадрируемых фигур является весьма обширным.

Теперь можно сказать, что измерение площадей S представляет собой функцию, заданную на классе всех квадрируемых фигур и принимающую числовые значения, т.е. площадь S(F) каждой фигуры F есть неотрицательное число (единица площади предполагается фиксированной).

Используя данное определение площади (с помощью палеток), можно доказать ряд свойств площади…

Вообще, хотелось бы отметить, что при использовании палетки в школе полезно помнить следующее:

Измерение площади с помощью палетки есть прямое (непосредственное) измерение, при котором искомое значение величины определяется путем сравнения ее с соответствующей единицей. Измерение площади путем измерения длин отрезков и использования формул является косвенным. Замена непосредственного сравнения сравнением опосредованным является значительным достижением человеческой мысли и представляет одну из древнейших математических абстракций. Нет оснований предполагать, что эта абстракция легко дается школьнику, непонимание же сути дела значительно затрудняет дальнейшее изучение теории измерения площадей (имеется в виду хотя бы обоснование формулы площади прямоугольника для случая, когда длины сторон не выражаются натуральными числами). Ведь прежде, чем научить вычислять длины отрезков по каким-либо формулам, мы обучаем непосредственному измерению отрезков и этим самым даем возможность проверить вычисления непосредственным измерением. В теме "Площади" этому первичному этапу как раз и соответствует работа с палеткой.

Курс геометрии основной школы ограничивается лишь нахождением площадей фигур с прямолинейными контурами или круга и его частей. В практике же может встретиться фигура с произвольным контуром, и досадно, что выпускник основной школы оказывается неподготовленным для решения соответствующей задачи.

1.2 Этапы работы с площадями в средней школе

Тема "Площади фигур" изучается в школьном курсе математики в несколько этапов, а именно:

Пропедевтический курс (1-6 классы)

Основная школа (7-9 классы)

Старшая школа (10-11 классы)

В пропедевтическом курсе, который охватывает начальную школу и младшие классы среднего звена, учащиеся знакомятся с различными геометрическими фигурами, приобретают начальные навыки изображения этих фигур с помощью линейки, циркуля, угольника. С понятием площади учащиеся знакомятся на наглядно-интуитивном уровне. Школьники приобретают опыт непосредственного измерения, нахождения и сравнения площадей с помощью клетчатой бумаги, палетки, а также знакомятся с различными единицами измерения площадей и переводом из одних единиц измерения в другие.

На этом же этапе учащимся приводятся формулы для косвенного измерения площадей (формулы для вычисления площадей прямоугольника, квадрата, прямоугольного треугольника и круга), которые даются без всякого обоснования. Учащиеся вычисляют площадь прямоугольника, а также площадь фигуры, составленной из единичных квадратов.

Обязательным является умение решать задачи следующего типа:

№ 1. Найдите площадь квадрата, изображенного на рис.2.

№ 2. Чему равна площадь фигуры, изображенной на рис.3.

№ 3. Длина прямоугольника равна 20 мм, ширина - 14 мм. Найдите площадь этого прямоугольника.

На втором этапе изучается большое число теоретических фактов, с помощью которых проводится опосредованное, косвенное измерение площадей. Переходя к этому этапу необходимо мотивировать для учащихся переход от прямого измерения площадей к косвенному, для чего полезно с ребятами вспомнить об инструментах, спомощью которых измеряются углы(транспортир), длины отрезков(линейка) и заметить, что нет такого удобного, точного инструмента, с помощью которого измеряются площади.

Измерение площадей начинается во всех учебниках с измерения площади прямоугольника. Для прямоугольника с длинами сторон, выражающимися целыми числами, формула S=ab легко устанавливается (она известна учащимся из курса начальной школы). В школьном курсе геометрии после изучения площади прямоугольника с длинами сторон, выражающимися целыми числами, в начальной школе (или, в крайнем случае, площади прямоугольника с длинами сторон, выражающимися конечными десятичными дробями) больше к вопросу о площади прямоугольника не возвращаются вплоть до изучения темы "Площадь многоугольников"(в 8-9 классах). При этом здесь формула площади прямоугольника S=ab считается известной (для любых прямоугольников) и с ее помощью выводятся формулы для вычисления площади треугольника и частных видов четырехугольников. Вычисление площадей многоугольников является составной частью решения задач на многогранники в курсе стереометрии. Поэтому основное внимание уделяется формированию практических навыков вычисления площадей многоугольников в ходе решения задач.

На этом же этапе доказывается формула площади круга: S= рr2 . Вывод этой формулы основан на теории пределов, которой в 9-летней школе нет. На интуитивном уровне учащиеся понимают, что периметр правильного многоугольника, вписанного в окружность, при неограниченном увеличении числа сторон и стремлении к нулю длины наибольшей его стороны "стремится" к длине окружности.

На данном этапе учащиеся решают несложные задачи на вычисление геометрических величин (длин, углов, площадей), применяя изученные свойства фигур и различные формулы и, главное, проводя аргументацию в ходе решения задач.

Обязательным является умение решать задачи следующего типа:

№ 1. Найдите площадь правильного треугольника, сторона которого равна 8 см.

№ 2. Найдите площадь прямоугольного треугольника, если его гипотенуза равна 17 см, а один из катетов равен 15 см.

№ 3. Диагональ квадрата равна 14 см. Найдите его площадь.

№ 4. ABCD - трапеция. Докажите, что треугольники ABD и ACD имеют равные площади (рис. 4).

№ 5. Найдите площадь круга, вписанного в правильный шестиугольник, сторона которого равна 4 см.

Теория площадей находит дальнейшее развитие в старшей школе в курсе геометрии трехмерного пространства. На этом этапе учащиеся вычисляют площади поверхностей, сечений многогранников и тел вращения, используя практические навыки вычисления площадей плоских фигур, приобретенные в основной школе, а также применяя аппарат математического анализа, вычисляют площади фигур, ограниченных криволинейным контуром.

1.3 Анализ школьных учебников

Сравнительный анализ учебников будет проводиться как по теоретическому материалу, так и по задачному. Анализ по содержанию предлагаемого для изучения материала будет проводиться в трех аспектах:

Измерение площадей;

Вычисление площадей;

Метод площадей.

Может возникнуть вопрос, почему выбраны именно такие аспекты теории площадей. Выбор обоснован тем, что именно эти аспекты целиком охватывают теорию площадей. Измерение площадей и вычисление площадей подразумевают непосредственное (прямое) и опосредованное (косвенное) измерение площадей соответственно. Правда, первый аспект связан с практическим измерением площадей (с помощью палетки), а второй - с использованием формул. Последний же аспект охватывает область применения площадей, а именно, использование свойств площади при решении задач и доказательстве теоретических фактов, в формулировках которых площадь может даже не упоминаться.

Цели сравнительного анализа учебников:

Представлен ли каждый из указанных аспектов в учебнике?

Как представлен?

Для анализа были выбраны четыре учебника по геометрии, а именно: учебник А.В.Погорелова, учебник Л.С.Атанасяна и др., учебник И.Ф.Шарыгина и учебник коллектива А.Д.Александрова и др. Первые два выбраны потому, что их чаще всего используют в школе. Учебник И.Ф.Шарыгина интересен тем, что в нем достаточно полно и доступно раскрывается тема "Площади плоских фигур" и, кроме того, это единственный учебник, в котором рассматривается метод площадей. Учебник А.Д.Александрова и др. является своеобразным, нетрадиционным и, вообще, является учебным пособием для классов с углубленным изучением математики. И хотя в данном исследовании мы ограничились рассмотрением проблемы в общеобразовательных классах, учебник А.Д. Александрова был включен в анализ с целью выявления заданий для более сильных учеников, проявляющих интерес к математике.

Начнем с того, что тема "Площади плоских фигур" изучается во всех учебниках в разное время. У А.В.Погорелова эта тема рассматривается в самом конце 9 класса, т.е. при изучении этой темы повторяется весь курс планиметрии. В задачах же появляется новое задание: "найдите площадь", а остальные задания и условия были рассмотрены ранее. Хотелось бы отметить, что А.В.Погорелов объединил две темы "Площади многоугольников" и "Площадь круга" в одной главе: "Площади фигур". Мы ни в коем случае не беремся судить автора о правильности его выбора места для изучения этой темы, но, на наш взгляд, такое расположение не совсем удачно хотя бы потому, что он не может применить ее, а ведь с помощью площадей можно доказать множество геометрических фактов, решить интересные содержательные задачи.

У Л.С.Атанасяна и др. тема "Площади многоугольников" и "Площадь круга" изучаются в разное время, а именно: 8 класс и середина 9 класса соответственно.

У И.Ф.Шарыгина изучение этих тем идет в самом начале 9 класса, причем изучаются они неразрывно друг от друга. Мы считаем, что на эту тему автор, как и А.В.Погорелов, поставил задачу научить новому и повторить весь материал, пройденный ранее (и хорошо забытый за время летних каникул).

А.Д.Алексанлров и др. же эти темы рассматривает в самом начале 8 класса и изучается параллельно с остальными темами до конца 8 класса (темы "Площади многоугольников" и "Площадь круга" изучаются в разное время).

Во всех учебниках, кроме учебника А.В.Погорелова, введению понятия "площадь" предшествует рассмотрение жизненных примеров, что, вообще, необходимо при изучении математики. А данная тема является одной из тех тем, которые напрямую связаны с жизнью и которые наглядно демонстрируют применение математических знаний на практике. Тем более из курса математики 1-6 классов учащимся известно понятие "площадь", поэтому можно дать задание учащимся привести примеры самостоятельно. В этом смысле, учебник А.В.Погорелова несколько сух и не использует в достаточной степени потенциал учащихся.

Во всех учебниках понятие площади вводится аксиоматически, т.е. дается точное определение площади и перечисляются ее свойства, а у И.Ф.Шарыгина к тому же свойства представлены наглядно.

Что касается измерения площадей, то во всех учебниках этот вопрос затронут по-разному. У Л.С.Атанасяна и др. описывается процесс измерения площадей на примерах прямоугольника и трапеции, затем говорится, что на практике он неудобен, поэтому площадь вычисляют по определенным формулам, говорится также о единицах измерения площадей.

У А.В.Погорелова вообще не рассматривается вопрос об измерении площадей.

И.Ф.Шарыгин не рассматривает подробно измерение площадей. В учебнике рассматривается пример, в котором показывается, что единичный квадрат не единственная фигура с площадью 1.

У А.Д.Александрова и др. подробно рассмотрен процесс измерения площадей, а также подробно говорится о единицах измерения площадей (приводится пример перехода от одной единицы площади к другой).

Что касается вычисления площадей, то во всех учебниках представлено достаточно полное изложение этого аспекта теории площадей. Естественно, у каждого учебника есть свои особенности, вызванные построением курса самих учебников.

Итак, начнем с учебника А.В.Погорелова. Здесь представлены выводы основных формул для вычисления площадей фигур. В теории разобран ряд задач с решениями, таких как: вывод формулы Герона, формула для вычисления площади произвольного четырехугольника, формулы для радиусов вписанной и описанной окружностей треугольника: r=2S/(a+b+c) и R=abc/4S. Здесь же рассмотрены площади подобных фигур, а также площади круга и его частей: кругового сектора и кругового сегмента. Хотелось бы отметить, что такой порядок изложения материала обосновывается тем, что тема "Площади фигур" у А.В.Погорелова завершает курс 9 класса.

Что касается учебника Л.С.Атанасяна и др., то он значительно полнее рассматривает теорию площадей, нежели А.В. Погорелов. В этом учебнике доказывается, что площадь квадрата со стороной a равна a2, доказывается теорема об отношении площадей треугольников, имеющих по одному равному углу. Эта теорема является следствием теоремы о площади треугольника (площадь треугольника равна половине произведения его основания на высоту) и играет важную роль при изучении подобия треугольников. Затем доказывается с помощью свойств площадей теорема Пифагора, здесь же приводится историческая справка. На формуле Герона внимание не заостряется - она вынесена со своим выводом в задачи на закрепление. Уже в 9 классе, когда дети ознакомились с элементами тригонометрии, доказывается формула для вычисления площади треугольника (по двум сторонам и углу между ними), приводятся формулы для вычисления площади правильного многоугольника, формулы для вычисления площади круга и кругового сектора (круговой сегмент не рассматривается). Учебник также знакомит учащихся с задачей о квадратуре круга, и вообще, содержит интересные исторические справки, которые не только вызывают интерес школьников к изучаемому материалу, но и полезны для общего развития детей.

В учебнике И.Ф.Шарыгина традиционно рассматриваются формулы для вычисления площадей прямоугольника, параллелограмма, трапеции и несколько нестандартных формул для вычисления площади треугольника. Формула Герона рассмотрена с двумя своими доказательствами, автор не обошел стороной и формулу для вычисления площади произвольного четырехугольника. Здесь же доказывается теорема об отношении площадей подобных фигур (это оказалось возможным потому, т.к. тема "Подобие" изучена в 8 классе). Следом выводятся формулы площади круга, кругового сектора и сегмента. Здесь же рассмотрена задача о квадратуре круга. Вообще, этот учебник отличается полным, понятным и интересным изложением материала, здесь также приведены интересные исторические факты.

У А.Д.Александрова и др. также рассматриваются формулы для вычисления площадей различных четырехугольников, треугольников, круга, кругового сектора и даже кольца, но из-за особенностей самого учебного пособия, соответствующие формулы для вычисления площади той или иной фигуры приводятся не все сразу, а только тогда, когда для их вывода подготовлена основа. Например, сначала приводится только одна формула для вычисления площади треугольника S=, после введения теоремы Пифагора и как одно из ее применений рассмотрена формула Герона. После рассмотрения темы "Синус" приводится формула для вычисления площади треугольника по двум сторонам и углу между ними.

Кроме того, здесь представлена задача о квадратуре круга и изопериметрическая задача. Вообще, хотелось бы отметить полноту излагаемого материала в данном учебном пособии, его высокий теоретический уровень, который предназначен для классов с углубленным изучением математики, учебник содержит также некоторые сведения из истории геометрии. Метод площадей рассматривается только в учебнике И.Ф. Шарыгина. Здесь ему отведен целый раздел (который так и называется), в котором рассматриваются задачи с его применением, приведены задачи для самостоятельного решения. В других учебниках об этом методе даже не упоминается. Хотя у Л.С. Атанасяна и др., например, с помощью метода площадей доказывается первый признак подобия треугольников, а у А.Д. Александрова и др. с помощью этого метода доказывается теорема Пифагора. Итак, мы рассмотрели все четыре учебника, и убедились в том, что каждый из них имеет свои особенности, свои достоинства и недостатки. Главным недостатком всех рассматриваемых учебников является то, что ни в одном из них полностью все три аспекта площадей не отражены. У А.В.Погорелова нет ни измерения площадей, ни метода площадей. У Л.С.Атанасяна и др. и А.Д.Александрова и др. достаточно полно отражены только два аспекта: измерение площадей и вычисление площадей. Не упоминая о методе площадей, авторы применяют понятие площадь при доказательстве различных теорем и решении задач, в формулировках которых отсутствует упоминание о площади. По сравнению с остальными учебниками, только в учебнике И.Ф.Шарыгина в названии параграфа присутствует название непосредственно самого метода площадей. Автор в полной мере рассматривает метод площадей, вычисление площадей, но недостаточно подробно останавливается на измерении площадей.

При анализе задач по теме "Площади плоских фигур", приведенных в рассматриваемых учебниках можно сделать следующие выводы: в учебнике А.В.Погорелова в основном задачи на вычисление площадей многоугольников, круга и его частей, причем нет разделения задач по уровням сложности. В учебнике Л.С.Атанасяна и др. помимо основных задач, приводимых в конце каждого параграфа темы, предлагается множество дополнительных задач по данной теме, кроме того, в конце учебника авторами предложены задачи повышенной трудности. В основном, большинство из этих задач - задачи на вычисление площадей, но помимо этих задач присутствуют задачи и на измерение площадей, и на метод площадей, а также различные задачи на равновеликость фигур и тд. Учебники же И.Ф.Шарыгина и А.Д.Александрова кроме вышеуказанных задач содержат интересные задачи на разрезание и перекраивание, а также задачи по готовым чертежам. Кроме того, в этих учебниках задачи рассматриваются не только на плоскости, но и на пространственных объектах. Задачи разделены по уровням сложности. Хотелось бы отметить, что во всех учебниках присутствуют задачи практического содержания. И это важный положительный момент, ведь решая прикладные задачи на уроках математики, учащиеся видят жизненную необходимость тех или иных теорем, понятий, формул, что способствует более глубокому изучению основ геометрии как математической науки.

1.4 Психолого - дидактические основы обучения по теме "Площади фигур"

Для успешного преподавания математики каждому учителю необходимо учитывать возрастные особенности школьников. Осуществление дидактических принципов обучения также является условием успешного обучения. Рассмотрим подробнее важнейшие дидактические принципы обучения математике с учетом специфики темы "Площади фигур".

Принцип сознательности

Ни одно явление не может быть понято, если взять его в изолированном виде, вне связи с окружающими явлениями. Сознательно усвоить материал - значит понять его связь с окружающим миром, проникнуть в сущность взаимоотношений между фактами, выводами, понятиями. Ученик, сознательно изучивший предмет, должен уметь применять полученные знания на практике. При изучении темы "Площади фигур" следует обратить внимание учеников, что с площадями различных плоских фигур они ежедневно сталкиваются в реальной жизни(например, площадь квартиры, дачного участка), в природе, в стоительстве, искусстве, а также в других изучаемых ими школьных дисциплинах, будь то география, физика и т.д. После этого школьники будут более сознательно воспринимать данную тему: знание, для чего изучаем, способствует пониманию того, что изучаем.

Ученик, сознательно усвоивший математику, должен не только видеть связь между изучаемым материалом и окружающей действительностью, но и понимать, что факты, понятия и свойства, рассматриваемые в математике, не изолированы друг от друга, а представляют стройную систему, каждое звено которой находится в связи с другими звеньями. Добиться такого усвоения математики можно, если учитель сам будет чаще раскрывать эти связи, обращая на них внимание учащихся перед изучением темы или раздела, в процессе изучения, при повторении.

Понять связь между изучаемым помогают таблицы и схемы. В таблицах и схемах может быть дана классификация пройденного материала, представлена его структура.

Например, для систематизации знаний учащихся в завершении изучения темы "Площадь треугольника" можно предложить учащимся составить следующую таблицу:

Сознательность усвоения учащимися учебного материала зависит, конечно и от объяснения учителя. Объяснение должно быть четким: необходимо пояснять непонятные учащимся термины, привести разъясняющие примеры. О степени сознательности решения задач можно судить по тому, насколько ученик умеет обосновать выбор действий, составляющих ход решения. Необходимо, чтобы решая задачу, ученик отправлялся не только от данных - это часто приводит к тому, что он не знает, какой результат в конечном счете дадут выбранные им действия но имел бы в виду и искомую величину. Чтобы достигнуть этого, надо практиковать составление плана решения, применяя аналитический метод рассуждения (следуя от неизвестного к известному). Рассуждая синтетически, ученик оформит решение. Для примера рассмотрим следующую задачу:

Задача: Найти площадь квадрата по его диагонали.

Применим в данной задаче аналитический метод рассуждения для нахождения способа ее решения:

Решение: Пусть ABCD-данный квадрат (рис. 5), а BD = d - его диагональ. Найдем площадь этого квадрата.

Учителю уместно задать следующие вопросы:

- О какой фигуре идет речь в условии задачи?

- Что известно о данной фигуре?

- Как можно найти площадь квадрата?

Итак, получили схему, в которой все неизвестные величины задачи выражены через известные. Поднимаясь снизу вверх по этой схеме, учащиеся могут оформить решение задачи (используя синтетический метод). Таким образом данная задача решена аналитико-синтетическим методом. Желательно после этой задачи с целью закрепления полученного результата (формулы для вычисления площади квадрата по его диагонали) предложить учащимся решить аналогичную задачу при конкретном числовом значении d. Можно сказать, что данная задача относится к числу задач на разрушение стереотипа, ведь учащиеся считают, что для нахождения площади квадрата необходимо знать его сторону. А приведенная выше задача показывает, что площадь квадрата можно найти зная лишь диагональ квадрата.

Сочетание анализа и синтеза при разборе и оформлении решения задачи благотворно сказывается на процессе мышления школьников. Именно, решая задачу самостоятельно, он будет исходить одновременно из данных и от искомого. Это будет способствовать сознательному выбору действий, составляющих ход решения. Сказанное выше относится и к доказательству теорем: сочетание анализа и синтеза при составлении плана доказательства (анализ) и его окончательном оформлении (синтез) будет способствовать сознательному усвоению доказательства, проведению доказательства аналитико-синтетическим методом.

Критерием сознательности является и речь учащихся. Неточные формулировки свидетельствуют о непонимании материала и нередко выражают ошибочные утверждения. Например, ученик, пропустивний слова: "проведенную к этой стороне" в формулировке теоремы "Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне" делает неверное заключение. Учителю следует воспользоваться такого рода ошибкой, чтобы обратить внимание учащихся на значение точности речи.

Принцип наглядности

В преподавании математики нагдядность применяется как средство, способствующее правильному формированию математических понятий, облегчающее изучение материала, развивающее пространственные представления и воображение учащихся. Наглядность - основа прочности знаний.

При решении задач и доказательстве теорем учащиеся рассматривают геометрические фигуры в самых разнообразных положениях. Если учитель, вводя понятие, не вариировал форму и размеры чертежа, а также его положение на доске, то учащиеся не узнают определенный геометрический образ, когда он изображен в непривычном для них положении. Аналогичная ситуация происходит при замене одних обозначений другими. В этих случаях многие учащиеся испытывают некоторые затруднения при использовнии формул для вычисления площадей фигур и т.д. Эти затруднения можно предотвратить, если при введении понятия не ограничиваться построением одного чертежа.

Наглядность в обучении математике выступает как средство, облегчающее изучение материала. Материал легче усваивается учащимися, когда объяснение учителя сопровождается применением наглядных пособий. В геометрии, например, чертеж помогает ученику провести рассуждения при доказательстве теоремы, так как отдельные этапы доказательства ученик может связать с наглядными геометрическими образами. В процессе построения надо обратить внимание учащихся на особенности чертежа, вытекающие из условия теоремы (задачи). Правильно выполненный чертеж помогает понять содержание задачи (теоремы) и найти способ ее решения (доказательства). Полезен следующий прием.

Общий прием построения чертежа по условию задачи (теоремы)

Выполняйте чертеж аккуратно, не обязательно по всем правилам черчения, но примерно их придерживаясь (прямой угол должен выглядеть прямым углом, середина отрезка - серединой и т.п.), большим и "просторным";

Не перегружайте чертеж; иногда полезно изобразить лишь "функционирующие" части геометрической фигуры (например, если нужно найти радиус окружности, то саму окружность целиком можно не изображать);

Уточняйте чертеж по мере решения задачи, пытайтесь изобразить все возможные конфигурации, отвечающие условию и ходу решения задачи (лишние потом можно отбросить);

Например, к задаче "доказать, что R - радиус описанной около треугольника окружности равен , где a, b, c - длины сторон данного треугольника" возможны следующие варианты выполнения чертежа (рис.6):

Рис. 6

Используйте дополнительные построения, облегчающие решение (вводящие новые углы, отрезки и т.п.);

В то же время избегайте чрезмерного усложнения чертежа; этого можно достигнуть за счет "выносных чертежей", изображающих отдельные фрагменты всей фигуры;

Полезно непосредственно на чертеже указывать известные числовые и буквенные значения величин (отрезков, углов), заданных в условии или полученных в процессе решения;

Если в задаче говорится о фигурах общего вида (например, о произвольном треугольнике, четырехугольнике и т.п.), то нельзя изображать их как частные случаи (так, произвольный треугольник не должен выглядеть прямоугольным или равнобедренным, а произвольный четырехугольник - параллелограммом и т.п.).

Такое ошибочное выполнение чертежа приводит к построению неверных гипотез и умозаключений.

Важно помнить, что правильно выполненный чертеж помогает понять условие теоремы, выдвинуть гипотезу о ее доказательстве, но ни в коем случае не является самим доказательством.

Говоря о значении наглядности как средстве, облегчающем усвоение материала, следует подчеркнуть, что всякая переоценка роли наглядных пособий может принести даже вред развитию мышления и воображения учащихся. Так, пространственное воображение учащихся будет развиваться слабее, если решение каждой задачи и доказательство каждой теоремы учитель станет разъяснять на модели. Поэтому преподаватель должен в зависимости от конкретного материала и уровня развития учащихся решить вопрос, пользоваться наглядными пособиями или нет. Здесь можно лишь посоветовать учителю постепенно приучать учеников старших классов решать некоторые задачи, не пользуясь чертежом.

Например, совсем необязательным является выполнение чертежа в следующих задачах:

- Найти стороны прямоугольника, площадь которого равна 144 ед.2, а стороны относятся как 4:9;

- Найти сторону ромба, зная, что его диагонали относятся как 1:2, а его площадь равна 12 см2;

- В треугольнике со сторонами 8 см и 4 см, проведены высоты к этим сторонам. Высота, проведенная к стороне 8 см, равна 3 см. Чему равна высота, проведенная к стороне 4 см?

Наглядность при обучении математике не следует сводить к показу учащимся только заранее изготовленных пособий. Необходимо, чтобы в восприятии участвовали не только органы зрения, но и органы осязания. Необходимо, чтобы учащиеся сами изготовливали модели, измеряли, чертили. В начале изучения темы "Площади фигур" полезно предложить ученикам изготовить индивидуальные палетки, а по ее завершении - изготовить плакаты - памятки, с формулами для вычисления площадей различных плоских фигур. (См. игру "Математическое домино".) При ознакомлении с пространственными телами в младших классах средней школы, полезно в качестве домашнего творческого задания предложить ребятам сделать развертку цилиндра. Выполняя это задание, они подмечают, что площадь полной поверхности цилиндра состоит из площади двух кругов и площади прямоугольника. Окончательные выводы следует сделать на следующем же уроке под руководством учителя. Подобные упражнения готовят учащихся к практической деятельности, стимулируют познавательную активность школьников.

Принцип систематичности

Принцип систематичности обучения выражает необходимость обучать основам наук в строго определенной последовательности. Недопустимо такое положение, когда учитель при объяснении опирается на материал, еще неизвестный учащимся, пользуется терминами, смысл которых не ясен учащимся, ссылается на еще недоказанные теоремы. Новые выводы должны получаться как логическое развитие ранее изученных положений.

Осуществляя принцип систематического обучения, учитель должен учитывать познавательные особенности учеников и прежде всего особенности восприятия школьников. Из общей системы фактов и предложений, сообщенных учителем, учащиеся могут не уловить некоторых звеньев, важных для понимания всего дальнейшего материала, что в конечном счете приводит к непониманию всего материала в целом. Например, формула для вычисления площади треугольника, выраженная через две стороны этого треугольника и синус угла между ними, в учебниках А.В. Погорелова и И.Ф. Шарыгина вводится вместе с остальными формулами вычисления площади треугольника, так как к моменту изучения этой темы учащиеся уже знакомы с понятием синуса угла. А в учебнике Л.С. Атанасяна и других эта формула появляется после изучения темы "Площади многоугольников", только тогда, когда учащиеся познакомятся с понятием синуса угла.

Прорыв в усвоении может наступить и тогда, когда некоторые из ранее изученных сведений, необходимых для понимания нового материала, окажутся забытыми учащимися. Отсюда очевидна необходимость повторения. Этап актуализации знаний учащихся является важной составляющей практически каждого урока математики, успешное проведение которого обеспечивает понимание учащимися нового материала. Благодаря повторению, устанавливается связь между новым и уже изученным материалом.

Успех в решении задач "на площади" определяется не количеством, а правильным выбором базовых задач, обеспечивающих достижения базового уровня обучения, и опорных задач, т.е. задач, результат которых либо метод решения используется при решении других задач по данной теме. Примерами опорных задач "на площади" могут служить следующие задачи:

Задача: Докажите, что площадь треугольника не изменится при передвижении вершины треугольника по прямой, параллельной основанию.

Задача: Докажите, что медиана разбивает треугольник на два равновеликих треугольника, т.е. на два треугольника, площади которых равны.

Осуществление принципа систематического обучения предлагает не только систематичность изложения, но и систематичность изучения материала учащимися. Поэтому учитель должен требовать, чтобы школьники следили за объяснением, готовили домашние задания, не пропускали уроков и со всеми непонятными вопросами обращались к преподавателю. Учитель должен регулярно проверять наличие выполненных домашних работ всех учащихся, отмечая для себя типичные ошибки, возникающие у школьников при решении домашних задач. Разбор типичных ошибок учашихся на уроках предотвратит их появление в дальнейшем решении задач по данной теме.

Несистематическое изучение материала учащимися все еще является одной из основных причин неуспеваемости по математике. Пробелы в знаниях учеников порой носят такой серьезный характер, что ставят под угрозу возможность успешного изучения предмета. В этих случаях необходимо оказать школьнику индивидуальную помощь.

Принцип доступности

Осуществление принципа доступности обучения неразрывно связано с выполнением таких правил в обучении: как следовать от легкого к трудному, от известного к неизвестному, от простого к сложному, от частного к общему.

Дидактическое правило "следовать в обучении от известного к неизвестному" связано с осуществлением принципа систематического обучения. Об этом уже говорилось выше. Перейдем к рассмотрению правила: "вести обучение от частного к общему". Для примера рассмотрим следующую задачу:

Задача: Постройте треугольник, равновеликий данному четырехугольнику. Для ее решения полезно рассмотреть более частную задачу.

Задача: Постройте треугольник, равновеликий данному параллелограмму.

Анализ условия задачи приводит к следующему способу ее решения: удвоить высоту параллелограмма, оставив без изменения его основание (удвоить основание параллелограмма, оставив без изменения высоту). Реализация этого способа показана на рис. 7.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.