Производство полупроводниковых приборов
Технологический маршрут производства полупроводниковых компонентов. Изготовление полупроводниковых пластин. Установка кристаллов в кристаллодержатели. Сборка и герметизация полупроводниковых приборов. Проверка качества и электрических характеристик.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.11.2013 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
- Введение
- 1. Технология изготовления полупроводниковых пластин
- 1.1 Требования к полупроводниковым подложкам
- 1.2 Характеристика монокристаллического кремния
- 1.3 Обоснование применения монокристаллического кремния
- 1.4 Технология получения монокристаллического кремния
- 1.4.1 Получение кремния полупроводниковой чистоты
- 1.4.2 Выращивание монокристаллов
- 2. Механическая обработка монокристаллического кремния
- 2.1 Калибровка
- 2.2 Ориентация
- 2.3 Резка
- 2.4 Шлифовка и полировка
- 2.5 Химическое травление полупроводниковых пластин и подложек
- 3. Операция разделения подложек на платы
- 3.1 Алмазное скрайбирование
- 3.2 Лазерное скрайбирование
- 4. Разламывание пластин на кристаллы
- 5. Формирование p - n переходов
- 6. Присоединение металлических выводов к пластине полупроводника
- 7. Сборка и герметизация
- 8. Испытания приборов
- Заключение
- Список используемой литературы
Введение
В данном курсовом проекте будет рассмотрен технологический маршрут производства полупроводниковых компонентов. Технологический маршрут - это последовательность технологических операций применяемых для производства пластин, применяемых для изготовления ПП и ИМС.
Условно, весь производственный цикл проходит четыре основных стадии, выделенных на предприятии в отдельные подразделения:
1) изготовление полупроводниковых пластин, что включает в себя следующие технологии: шлифовка кремниевых пластин, диффузионные процессы формирования слоев полупроводниковых приборов;
2) установка кристаллов в кристаллодержатели и монтаж металлических выводов к пластинам полупроводника.
3) Сборка и герметизация готовых ПП и ИМС;
4) Проверка качества и электрических характеристик компонентов.
Таким образом, производство достаточно сложное и имеет большое количество технологических переходов.
1. Технология изготовления полупроводниковых пластин
1.1 Требования к полупроводниковым подложкам
Полупроводники в виде пластин или дисков, вырезанных из монокристаллов, называются подложками. В их объеме и на поверхности методами травления, окисления, диффузии, эпитаксии, имплантации, фотолитографии, другими технологическими приемами формируются элементы микросхем электронных приборов и устройств.
Качество поверхности подложки определяется ее микрорельефом (шероховатостью), кристаллическим совершенством поверхностных слоев и степенью их физико-химической чистоты. Поверхность подложки характеризуется не плоскостностью и не параллельностью. Высокие требования предъявляются и к обратной - нерабочей стороне подложки. Неодинаковая и неравноценная обработка обеих сторон подложки приводит к дополнительным остаточным механическим напряжениям и деформации кристалла, что обусловливает изгиб пластин.
После механической обработки в тонком приповерхностном слое подложки возникает нарушенный слой. По глубине он может быть разделен на характерные зоны. Для кристаллов Ge, Si, GaAs и других после их резки и шлифования на глубине 0,3.0,5 средней высоты неровностей расположена рельефная зона, в которой наблюдаются одинаковые виды нарушений и дефектов монокристаллической структуры: монокристаллические сколы, не выкрошившиеся блоки, трещины, выступы и впадины различных размеров. После резки дефекты располагаются в основном под следами от режущей кромки алмазного диска в виде параллельных дорожек из скоплений дефектов, в шлифованных кристаллах - равномерно по сечению. При полировании первый слой представляет собой поверхностные неровности, относительно меньшие, чем при шлифовании, и в отличие от шлифованной поверхности он является аморфным. Второй слой также аморфный, его глубина в 2.3 раза больше, чем поверхностные неровности. Третий слой является переходным от аморфной структуры к ненарушенному монокристаллу и может содержать упругие или пластические деформации, дислокации, а в некоторых случаях и трещины. В процессе обработки и подготовки поверхности подложек полупроводников необходимо создание совершенных поверхностей, имеющих высокую степень плоскопараллельности при заданной кристаллографической ориентации, с полным отсутствием нарушенного слоя, минимальной плотностью поверхностных дефектов, дислокаций и т.д. Поверхностные загрязнения должны быть минимальными.
1.2 Характеристика монокристаллического кремния
Физико-химические свойства кремния
1. Оптимальное значение ширины запрещенной зоны, которая обусловила достаточно низкую концентрацию собственных носителей и высокую рабочую температуру.
2. Большой диапазон реально достижимых удельных сопротивлений в пределах от 10-3 Ом-см (вырожденный) до 105 (близкий к собственному).
3. Высокое значение модуля упругости, значительная жесткость (большая, чем, например, у стали).
4. Оптимально высокая температура плавления, следующая из высокого значения модуля упругости и энергии связи.
5. Малая плотность (2,3 г/см3) и низкий ТКЛР 3·10-6 К-1.
6. Высокая теплопроводность (до 140 Вт/К·м, что близко к коэффициенту теплопроводности железа).
7. Тензочувствительность - существенное изменение удельного сопротивления при упругой деформации.
8. Высокая растворимость примесей, причем примеси несильно искажают решетку кристалла.
1.3 Обоснование применения монокристаллического кремния
В производстве ИМС Обычно используются полупроводниковые материалы в виде монокристаллических слитков, имеющих форму, близкую к цилиндрической. Размеры слитков, зависят от метода их выращивания и типа полупроводникового материала.
В настоящее время большинство полупроводниковых ИМС изготовляют на основе монокристаллического кремния, хотя в отдельных случаях используют германий. Это объясняется тем, что кремний по сравнению с германием обладает рядом физических и технологических преимуществ, важных для создания элементов ИМС. Физические преимущества кремния по сравнению с германием проявляются в следующем:
кремний имеет большую ширину запрещенной зоны и меньшие обратные токи переходов, что уменьшает паразитные связи между элементами ИМС, позволяет создавать микросхемы, работоспособные при повышенных температурах (до +120°С) и микромощные схемы, работающие при малых уровнях рабочих токов (менее 1 мкА);
кремниевые транзисторы имеют более высокое пороговое напряжение, а, следовательно, логические схемы на этих транзисторах характеризуются большой статической помехоустойчивостью;
кремний характеризуется меньшей диэлектрической проницаемостью, что обусловливает меньшие значения барьерных емкостей переходов при той же их площади и позволяет увеличить быстродействие ИМС.
Кремний - прочный и жесткий материал, в монокристаллическом состоянии пригодный для изготовления чувствительных элементов прецизионных широкодиапазонных датчиков в виде консолей, мембран очень малой толщины-вплоть до 1.3 Такие элементы могут массово производиться методами, разработанными в технологии ИС. Они обеспечивают резкое ускорение развития средств автоматики, печатной техники.
Сырье для получения кремния имеется всюду в неограниченных количествах: содержание его в земной коре превышает 26%.
Кремний нетоксичен в большинстве своих химических соединений, и его производство не сопровождается получением загрязняющих окружающую среду отходов, тем более что благодаря низкой материалоемкости микроэлектроники объем его производства будет всегда очень малым, несопоставимым с масштабами металлургических и химических производств.
Таблица 1 - Некоторые свойства германия и кремния
Свойства |
Единица измерения |
Германий |
Кремний |
|
Температурный коэффициент линейного расширения (0-1000С) |
град - 1 |
6,0·10-6 |
4,2·10-6 |
|
Предельная рабочая температура |
0С |
70 - 80 |
120 - 150 |
|
Температура плавления |
0С |
936 |
1414 |
|
Удельная теплопроводность |
Вт/см·град |
0,55 |
0,8 |
|
Удельная теплоемкость (0-1000С) |
кал/г·град |
0,08 |
0,17 |
|
Плотность при 200С |
г/см3 |
5,3 |
2,3 |
|
Удельное сопротивление при 200С |
Ом·см |
68 |
~1012 |
|
Ширина запрещенной зоны |
эВ |
0,72 |
2 |
|
1.4 Технология получения монокристаллического кремния
Производство монокристаллического кремния происходит в два этапа:
полупроводниковый прибор пластина кристалл
1.4.1 Получение кремния полупроводниковой чистоты
1) Восстановительная плавка сырья
Восстановительная плавка сырья, содержащего оксид кремния в виде кварцита, в электропечах при температуре 2273К (около 2000°):
SiO2+C = Si+2CO
В результате первой же операции получают элементарный кремний, однако его чистота еще очень низка и содержание основного вещества составляет около 99%. Кремний из - за высокой температуры плавления и реакционной способности по отношению к любым контейнерным материалам очистке не поддается.
2) Перевод технического кремния в соединения, удобные для глубокой очистки SiCl4, SiHCl3 или SiH4
Для получения хлорида кремния и хлорсилана используются реакции хлорирования:
Si+2Cl2SiCl4
Si+3HClSiHCl3+H2
Моносилан получают из предварительно изготовленного кремний-магниевого сплава:
Mg2Si+4NH4ClSiH4+2MgCl2+4NH3
3) Глубокая очистка.
Для дальнейшей глубокой очистки хлорида, хлорсилана и моносилана применяется один и тот же метод ректификации в жидком виде независимо от того, что первые два вещества в нормальных условиях - жидкости, третье - газ.
Ректификация - многократная перегонка - высокоэффективный, экономичный процесс, выполняющийся без применения каких-либо реагентов в герметичной аппаратуре из нержавеющей стали.
4) Восстановление с помощью водорода и пиролиз
Получение особо чистого кремния осуществляется по следующим реакциям:
восстановление (1373 K):
SiCl4 + 2Н2 Si + 4НCl
SiHCl3 + Н2 Si + 3НCl
Пиролиз (1273 K):
SiH4 Si + 2Н2
Восстановление осуществляется на нагретые кремниевые стержни-заготовки, непосредственно через которые пропускается электрический ток. Благодаря этому реакция локализуется на поверхности кремния и происходит постепенное наращивание их диаметра от исходных 8.10 до 50.100 мм. Для восстановления и разбавления газовых смесей, как в хлоридном, так и моносилановом процессах используются большие количества водорода.
1.4.2 Выращивание монокристаллов
1) Метод Чохральского
Около 75% всего производства ведется по методу Чохральского, который обеспечивает наивысшую однородность и структурное совершенство монокристаллов. Метод Чохральского - основана на свободной направленной кристаллизации на затравку из большого объема расплава, необходимого для выращивания всего слитка.
Последовательность операций при выращивании монокристаллов:
1. Подготовка исходных материалов - компоновка. Сырьем для плавки являются не только поликристаллический кремний, но и легирующая примесь, а также остатки кремния от предыдущей операции и отходы монокристаллов, не попавшие в готовую продукцию. Компоновка включает операции по очистке сырья, дозировке легирующих примесей, необходимые расчеты.
2. Загрузка материалов в тигель, вакуумирование рабочей камеры и плавление. После этого мощность нагревателя уменьшается так, чтобы температура расплава оставалась постоянной и близкой к температуре плавления, причем обеспечивается тепловое равновесие, и количество тепла, подводимое нагревателями, точно соответствует его потерям открытой поверхностью.
3. Затравление - соприкосновение монокристаллической затравки с расплавом - меняет тепловые условия в системе. Появляется дополнительный теплоотвод через затравку, а это создает возможность кристаллизации при постоянной температуре расплава, так как дополнительное тепло (скрытая теплота кристаллизации) может быть теперь отведено.
4. Выращивание шейки. Затравление сопровождается резким повышением температуры кристалла - затравки, поскольку на стадии плавления она находилась в зоне низкой температуры. При "тепловом ударе" в ней возникают напряжения и происходит образование дефектов. Эти дефекты неизбежно передались бы выращиваемому кристаллу, и чтобы избавиться от них, сначала поднимают затравку с высокой скоростью и "тянут" из расплава кристалл малого диаметра - шейку.
5. Разращивание и "выход на диаметр" - увеличение диаметра до заданного номинала - осуществляется за счет снижения скорости подъема затравки. Требуемый диаметр устанавливается оператором, который наблюдает за процессом через окно в корпусе установки. Точность управления диаметром слитка обычно невысока, поэтому дается допуск на 3.5 мм в большую сторону.
6. Выращивание цилиндрической части ведется в автоматическом режиме со скоростью 1,5.3 мм/мин. Поскольку уровень расплава в тигле при этом непрерывно понижается, меняются тепловые условия в зоне роста. Этот принципиальный недостаток трудно устраним в методе Чохральского, и обеспечение требуемой однородности - по длине слитка - проблема, во многом определяющая технико-экономические показатели. Для этого используются все возможные аппаратурные средства: регулирование температуры, скорости вытягивания, подъем и опускание нагревателя и тигля.
7. Оттяжка на конус и отрыв кристалла от остатков расплава завершают процесс выращивания.
Ограничения метода Чохральского состоят в следующем.
1. Растворение в кремнии материала кварцевого тигля происходит с заметной скоростью.
2. Вследствие непрямого и непостоянного по длине слитка фронта кристаллизации и изменения гидродинамических условий наблюдается сложная неоднородность в распределении примеси и удельного сопротивления по площади кристалла.
3. Неравномерное распределение дефектов, а также примесей по длине слитка.
Рисунок 1 - Схема установки для выращивания монокристаллов по методу Чохральского.
2) Метод бестигельной зонной плавки
Метод основан на плавлении небольшой зоны поликремниевой цилиндрической заготовки, находящейся в вертикальном состоянии. Необходимая узкая зона расплава создается с помощью высокочастотного индуктора (стандартная частота генератора 5,28 МГц). Тепло за счет вихревых токов в самом кремнии, и при достаточной мощности выделяется непосредственно ВЧ-генератора, это приводит к быстрому расплавлению конца заготовки и образованию капли.
Благодаря небольшой плотности кремния и высокому поверхностному натяжению капля способна удерживаться на слитке; к ней снизу подводится затравка и далее, как и в методе Чохральского, вытягивается шейка, а затем и цилиндрическая часть. Содержание примесей в кремнии в результате бестигельной зонной плавки уменьшается за счет перегрева расплава и частичного испарения. Применение бестигельной зонной плавки наиболее целесообразно для моносиланового кремния, свободного от кислорода и углерода.
В результате могут быть получены монокристаллы с предельно высоким, близким к собственному удельным сопротивлением, т.е. за счет бестигельной зонной очистки.
Рисунок 2 - Схема бестигельной зонной плавки
2. Механическая обработка монокристаллического кремния
2.1 Калибровка
Калибровка монокристаллов полупроводниковых материалов. Обеспечивает придание им строго цилиндрической формы и заданного диаметра. Калибровку монокристаллов полупроводников проводят чаще всего методом круглого шлифования на универсальных круглошлифовальных станках, снабженных алмазным шлифовальным кругом с зернистостью, обозначенной 50/40 (основная фракция 40 мкм, а количество крупной, размером 50 мкм, не более 15%). Перед операцией калибровки к торцам монокристалла наклеечной мастикой приклеивают металлические конуса ("центры") таким образом, чтобы их ось совпадала с продольной осью монокристалла.
После калибровки на поверхности монокристалла образуется нарушенный слой глубиной 50.250 мкм в зависимости от скорости продольной подачи. Присутствие его на периферии подложек может вызывать появление сколов, а при последующей высокотемпературной обработке приводить к генерации структурных дефектов, распространяющихся в центральные области подложки. Для снятия нарушенного слоя прошедшие операции калибровки монокристаллы полупроводников подвергают операции химического травления.
2.2 Ориентация
В процессе роста монокристаллов наблюдается несоответствие оси слитка кристаллографической оси. Для получения пластин, ориентированных в заданной плоскости, до резки производят ориентацию слитков. Способы ориентации кристаллов определяются их природой, типом детали и ее функциональным назначением. Оптически изотропные диэлектрики ориентируют для учета влияния технологических свойств кристалла на точность параметров детали. У анизотропных диэлектриков положение преломляющих и отражающих поверхностей детали зависит от требуемого преобразования светового потока. Ориентация полупроводников предусматривает определения кристаллографической плоскости, в которой материал имеет заданные электрические свойства. Ориентацию полупроводников проводят рентгеновскими или оптическими методами.
Рентгеновский метод основан на отражении рентгеновских лучей от поверхности полупроводникового материала. Интенсивность отражения зависит от плотности упаковки атомами данной плоскости. Кристаллографической плоскости, более плотно упакованной атомами, соответствует большая интенсивность отражения лучей. Кристаллографические плоскости полупроводниковых материалов характеризуются определенными углами отражения падающих на них рентгеновских лучей. Величины этих углов для кремния: (111) - 17°56', (110) - 30° 12', (100) - 44°23'
Рентгеновский диафрактометрический метод основан на измерении угла отражения характеристического рентгеновского излучения от идентифицируемой плоскости. Для этого применяют рентгеновские дифрактометры общего назначения, например типа ДРОН-1,5, или рентгеновские установки, например типа УРС-50И (М), и другие, снабженные рентгеновскими гониометрами и устройствами, обеспечивающими вращение горизонтально располагаемого монокристалла вокруг оси с заданной скоростью.
При проведении измерения падающий на торцевой срез монокристалла рентгеновский луч направляют под брэгговским углом отражения р. Счетчик рентгеновских квантов (Гейгера) располагают под углом 2р к падающему лучу. Если ориентируемая плоскость, например (111), составляет некоторый угол, а с торцевым срезом монокристалла, то отражение от нее можно получить, повернув монокристалл на этот же угол.
Определение угла отражения проводят относительно двух взаимно перпендикулярных осей, одна из которых лежит в плоскости чертежа (рисунок 3)
Рисунок 3 - Схема ориентации монокристаллов полупроводников рентгеновским методом: 1-падающий рентгеновский луч; 2 - монокристалл; 3 - отраженный рентгеновский луч: 4 - счетчик Гейгера
Оптический метод основан на том, что на протравленной в селективном травителе поверхности полупроводника, возникают фигуры травления, конфигурация которых определяется ее кристаллографической ориентацией. На поверхности (111) фигуры травления имеют форму трехгранных пирамид, а на (100) - четырехгранных. При оснащении такой поверхности параллельным пучком света отражающиеся лучи будут образовывать на экране световые фигуры.
В зависимости от того, насколько сильно отклонена плоскость торцевого среза монокристалла от плоскости (hkl), световая фигура, образованная отраженным пучком света, будет находиться ближе или дальше от центра экрана. По величине отклонения световой фигуры от нулевого деления экрана определяют угол отклонения, а плоскости торца монокристалла от плоскости (hkl). Затем, поворачивая монокристалл на 90°, определяют другой угол Р; после выполнения ориентации монокристалла на его торце твердосплавным резцом наносят стрелку, направление которой указывает, в какую сторону от торца монокристалла отклонена требуемая плоскость. Точность ориентации монокристаллов полупроводников рентгеновским методом ± (2.6) ', а оптическим ± (15.30) '.
2.3 Резка
Кремний - твердый и хрупкий материал. Эти свойства кремния определяют способы его механической обработки и выбор абразивных материалов. Необходимо учитывать, что слитки кремния имеют большой диаметр (более 80 мм с тенденцией роста до 100.110 мм).
В таблице 2 приведена сравнительная характеристика различных абразивных и полупроводниковых материалов по их твердости.
Таблица 2 - Сравнительная характеристика абразивных материалов
Наименование материала |
Микротвердость 10Н/м2 |
Твердость по шкале Мооса |
|
Алмаз |
10 |
10 |
|
Карбид бора |
4,9 |
10 |
|
Карбид кремния |
3,5 |
9,5 |
|
Электрокорунд |
1,4 |
9,2 |
|
Кремний |
1,0 |
7 |
|
Германий |
0,8 |
6 |
|
Арсенид галлия |
0,7 |
4,5 |
Алмаз - самый твердый материал. При обработке кремния используются как природные, так и синтетические алмазы, уступающие первым по механическим свойствам. Иногда применяют карбиды бора В4С и кремния SiC, а также электрокорунд Al2O3. В настоящее время при резке слитков кремния на пластины в качестве режущего инструмента применяют металлические диски с внутренней алмазной режущей кромкой.
Инструмент представляет собой металлический диск с центральным отверстием, на кромку которого нанесена алмазная крошка. Толщина диска 0,1-0,15 мм, а диаметр отверстия обусловлен диаметром разрезаемого слитка. Схема установки для резки слитков представлена на рисунке 4.
Рисунок 4 - Металлический диск с внутренней алмазной режущей кромкой: 1 - металлический диск; 2 - алмазная крошка
Режущий инструмент (диск) растягивается и закрепляется в специальном барабане на головке шпинделя станка для резания. Слиток разрезается диском с алмазной кромкой при вращении шпинделя (3000 - 5000 об/мин.). Скорость движения слитка при его перемещении перпендикулярно оси режущего диска составляет 40 - 50 мм/мин. (для слитков диаметром 60 мм не более 20 - 30 мм/мин.). После отрезания очередной пластины с помощью автоматической системы происходит возврат слитка в исходное положение, а также, перемещение его на заданный шаг. Устройство для закрепления слитка позволяет поворачивать слиток в горизонтальной и вертикальной плоскостях на требуемые углы по отношению к плоскости вращения алмазного диска и тем самым обеспечивает ориентированную резку. Станок снабжен системой подачи воды для охлаждения режущего диска и вымывания отходов резки (частичек выкрошенного кремния).
Рисунок 5 - Схема установки для резки алмазным диском: а - внутренний способ резки; б - гребенчатый способ резки (1 - барабан; 2 - диск; 3 - алмазное покрытие; 4 - оправка; 5 - пластина; 6 - слиток)
Поверхность пластин, полученных после резки, не удовлетворяет требованиям, которые предъявляют к качеству поверхности кремния при планарной технологии. С помощью электронографа устанавливают наличие приповерхностных слоев, не имеющих монокристаллической структуры. Толщина нарушенного слоя после резки диском 10 - 30 мкм в зависимости от скорости вращения диска. Поскольку в ИС глубина, на которой располагаются p-n - переходы, составляет единицы и десятые доли микрона, наличие нарушенных слоев толщиной 10 - 30 мкм неприемлемо. Микронеровности на поверхности не должны превышать 0,02 - 0,1 мкм. Кроме того, проведение фотолитографии плоскопараллельности пластин следует поддерживать на уровне 1 мкм по диаметру пластины вместо 10 мкм после резки.
2.4 Шлифовка и полировка
Для обеспечения требуемого качества поверхности пластин должны быть подвергнуты дальнейшей обработке. Эта обработка состоит в шлифовке и последующей полировке пластин. Шлифовка и полировка пластин производится на плоскошлифовальных прецизионных станках с использованием абразивных материалов с размером зерна около 40 мкм (микропорошки). Чаще всего применяют группы микропорошков с зернами 14 мкм и меньше. В таблице 3 приведены марки и размеры зерен основной фракции используемых микропорошков. Микропорошки М14, М10, М7, М5 изготавливаются из карбидов бора, кремния и электрокорунда, микропорошки марок АСМ - из алмаза.
Таблица 3 - Микропорошки для шлифовки и полировки пластин кремния
Марка |
М14 |
М10 |
М7 |
М5 |
АСМ7/5 |
АСМ5/3 |
АСМ3/2 |
АСМ2/1 |
АСМ1/0,5 |
|
Размер, мкм |
14.10 |
10.7 |
7.5 |
5.3 |
7.5 |
5.3 |
3.2 |
2.1 |
1 и мельче |
В зависимости от типа микропорошка выбирается материал поверхности шлифовальщика. При шлифовке пластин микропорошками М14-М15 применяют стеклянный шлифовальщик, при полировке микропорошками АСМ - специальные шлифовальщики с поверхностью из тканевых материалов. При обработке пластин на рабочий шлифовальщик устанавливаются три головки с наклеенными пластинами. Головки удерживаются от перемещения по шлифовальщику специальными направляющими кронштейнами с опорными роликами (рисунок 6). За счет силы трения возникающей между соприкасающимися поверхностями рабочего шлифовальщика и головок, последние вращаются вокруг своих осей. Это вращение головок создает условия для равномерного шлифования или полирования.
При шлифовании микропорошками М14 - М15 используют водные суспензии с соотношением воды к абразиву 31, при полировке пластин специальные алмазные пасты.
В настоящее время принята определенная последовательность операций при механической обработке пластин. При этом учитывается то, что толщина снимаемого слоя на каждой операции должна превышать толщину нарушенного слоя, который образовался на предыдущей операции. Пластины шлифуют с двух сторон, а полируют только рабочую сторону.
Таблица 4 - Характеристики микропорошков
Тип порошка |
Толщина нарушенного слоя, мкм |
Скорость удаления материала, мкм/мин |
Класс шероховатости поверхности |
|
М14 |
20 - 30 |
3 |
7 |
|
М10 |
15 - 25 |
1,5 |
8 - 9 |
|
АСМ3/2 |
9 - 11 |
0,5 - 1,0 |
12 - 13 |
|
АСМ1/0,5 |
5 - 7 |
0,35 |
13 |
|
АСМ0,5/0,3 |
Менее 3 |
0,25 |
13 - 14 |
|
АСМ0,3/0,1 |
Менее 3 |
0,2 |
14 |
Рисунок 6 - Схема плоскошлифовального станка и расположения головок: 1 - дозирующее устройство с абразивной суспензией; 2 - грузы; 3 - головка; 4 - пластины; 5 - шлифовальщик; 6 - направляющий ролик
В целом механическая обработка пластин, удовлетворяющих требованиям планарной технологии, приводит к большим потерям кремния (около 65%).
2.5 Химическое травление полупроводниковых пластин и подложек
Сопровождается удалением поверхностного слоя с механически нарушенной кристаллической структурой, вместе с которым удаляются и имеющиеся на поверхности загрязнения. Травление является обязательной технологической операцией.
Кислотное травление полупроводников в соответствии с химической теорией идет в несколько этапов: диффузия реагента к поверхности, адсорбция реагента поверхностью, поверхностные химические реакции, десорбция продуктов реакции и диффузия их от поверхности.
Травители, для которых самыми медленными, определяющими суммарный процесс травления этапами являются диффузионные, называются полирующими. Они нечувствительны к физическим и химическим неоднородностям поверхности, сглаживают шероховатости, выравнивая микрорельеф. Скорость травления в полирующих травителях существенно зависит от вязкости и перемешивания травителя и мало зависит от температуры.
Травители, для которых самыми медленными стадиями являются поверхностные химические реакции, называются селективными. Скорость травления в селективных травителях зависит от температуры, структуры и кристаллографической ориентации поверхности и не зависит от вязкости и перемешивания травителя. Селективные травители с большой разницей скоростей травления в различных кристаллографических направлениях принято называть анизотропными.
Поверхностные химические реакции при полирующем травлении проходят в две стадии: окисление поверхностного слоя полупроводника и перевод окисла в растворимые соединения. При травлении кремния роль окислителя выполняет азотная кислота:
Фтористоводородная (плавиковая) кислота, входящая в состав травителя, переводит окись кремния в тетрафторид кремния:
Для травления, дающего зеркальную поверхность пластин, используют смесь указанных кислот в соотношении 3: 1, температура травления 30.40°С, время травления около 15 с.
3. Операция разделения подложек на платы
Ломка проскрайбированных пластин - весьма ответственная операция. При неправильном разламывании даже хорошо проскрайбированных пластин возникает брак: царапины, сколы, нарушение формы кристаллов и т.п.
Разделение пластин скрайбированием осуществляют в две стадии: вначале на поверхность пластины между готовыми микросхемами наносят в двух взаимно перпендикулярных направлениях неглубокие риски, а затем по этим рискам размалывают ее на прямоугольные или квадратные кристаллы. При сквозном разделении пластину прорезают режущим инструментом насквозь.
3.1 Алмазное скрайбирование
Эта операция состоит в создании на полупроводниковой пластине между готовыми структурами рисок или разделительных канавок механическим воздействием на нее алмазного резца (рисунок 7), что приводит к образованию неглубоких направленных трещин. При приложении дополнительных усилий в процессе разламывания трещины распространяются на всю толщину пластины, в результате чего происходит разделение ее на отдельные кристаллы.
Основным достоинством скрайбирования наряду с высокими производительностью и культурой производства является малая ширина прорези, а следовательно, отсутствие потерь полупроводникового материала. Обычно ширина риски не превышает 1020 мкм, а глубина 510 мкм, скорость движения резца 5075 мм/с, нагрузка на резце 1,21,4 Н.
Рисунок 7 - Скрайбирование алмазным резцом: а) - нанесение рисок; б) - пластина с рисками; в) - конструкция алмазной пирамиды (1 - режущая грань резца; 2 - дорожки для скрайбирования в слое защитного диэлектрика; 3 - полупроводниковые микросхемы; 4 - кремниевая пластина)
Качество скрайбирования и последующей ломки в значительной степени зависят от состояния рабочей части алмазного резца. Работа резцом в изношенным режущим ребром или вершиной приводит к сколам при скрайбировании и некачественной ломке. Обычно скрайбирование выполняют резцами, изготовленными из натурального алмаза, которые по сравнению с более дешевыми резцами из синтетических алмазов имеют большую стоимость. Получили распространение резцы, имеющие режущую часть в форме трехгранной или усеченной четырехгранной пирамиды (рисунок 7, в), режущими элементами которой являются ее ребра.
3.2 Лазерное скрайбирование
При лазерном скрайбировании (рисунок 8) разделительные риски между готовыми структурами создают испарением узкой полосы полупроводникового материала с поверхности пластины во время ее перемещения относительно сфокусированного лазерного луча. Это приводит к образованию в пластине сравнительно глубоких (до 50.100 мкм) и узких (до 25…40 мкм) канавок. Канавка, узкая и глубокая по форме, играет роль концентратора механических напряжений. При разламывании пластины возникающие напряжения приводят к образованию на дне канавки трещин, распространяющихся сквозь всю толщину пластины, в результате чего происходит ее разделение на отдельные кристаллы.
Наряду с созданием глубокой разделительной канавки достоинством лазерного скрайбирования является его высокая производительность (100.200 мм/с), отсутствие на полупроводниковой пластине микротрещин и сколов. В качестве режущего инструмента используют импульсный оптический квантовый генератор с частотой следования импульсов 5.50 кГц и длительностью импульса 0,5 мс.
Рисунок 8 - Схема лазерного скрайбирования полупроводниковой пластины
4. Разламывание пластин на кристаллы
Разламывание пластин на кристаллы после скрайбирования осуществляется механически, приложив к ней изгибающий момент. Отсутствие дефектов кристаллов зависит от приложенного усилия, которое зависит от соотношения габаритных размеров и толщины кристаллов.
Наиболее простым способом является разламывание пластин на кристаллы валиком (рисунок 9). Для этого пластину 3 помещают рабочей поверхностью (рисками) вниз на мягкою гибкою (из резины) опору 4 и с небольшим давлением прокатывают ее последовательно в двух взаимно перпендикулярных направлениях стальным или резиновым валиком 1 диаметром 1030 мм. Гибкая опора деформируется, пластина изгибается в месте нанесения рисок и ломается по ним. Таким образом, разламывание происходит в две стадии - вначале на полоски, затем на отдельные прямоугольные или квадратные кристаллы.
Рисунок 9 - Разламывание полупроводниковых пластин на кристаллы валиком: 1 - валик; 2 - защитная пленка; 3 - кристалл; 4 - опора
Валик должен двигаться параллельно направлению скрайбирования, иначе ломка будет происходить не по рискам. Брак может проявиться также в том случае, если полоски или отдельные кристаллы смещаются относительно друг друга в процессе ломки. Поэтому перед ломкой пластины покрывают сверху тонкой эластичной полиэтиленовой пленкой 2, что позволяет сохранить ориентацию кристаллов в процессе ломки и избежать произвольного разламывания и царапания друг друга. Смещения кристаллов можно также избежать, поместив пластину перед разламыванием в герметичный полиэтиленовый пакет и откачав из него воздух.
Применяют различные установки, в которых валики движутся строго параллельно направлению рисок и имеют регулировки нагрузки. Более совершенен способ прокатывания пластины между двумя валиками (рисунок 10), при котором обеспечивается нагрузка, пропорциональная длине скрайберной риски.
Рисунок 10 - Разламывание полупроводниковой пластины прокатыванием между валиками: 1 - пластина; 2 - упругий валик; 3 - защитная пленка; 4 - стальной валик; 5 - пленка-носитель
Пластину 1, расположенную рисками вверх, прокатывают между двумя цилиндрическими валиками: верхним упругим (резиновым) 2 и нижним стальным 4. Для сохранения первоначальной ориентации кристаллов пластину закрепляют на термопластичной или адгезионной пленке-носителе 5 и защищают ее рабочую поверхность полиэтиленовой или лавсановой пленкой 3. Расстояние между валиками, определяемое толщиной пластины, устанавливают, перемещая один из них.
При прокатке более упругий валик в зависимости от толщины пластины деформируется и к ней прикладывается нагрузка, пропорциональная площади ее поперечного сечения или длине скрайберной риски. Пластина изгибается и разламывается по рискам, вначале на полоски, а после поворота на 90 - на кристаллы.
Рисунок 11 - Разламывание полупроводниковой пластины на сферической основе: 1 - сфера; 2 - пластина; 3 - резиновая диафрагма
При разламывании на сферической опоре (рисунок 11) пластину 2, расположенную между двумя тонкими пластичными пленками, помещают рисками вниз на резиновую диафрагму 3, подводят сверху сферическую опору 1 и с помощью диафрагмы пневмоническим и гидравлическим способами прижимают к ней пластину, которая разламывается на отдельные кристаллы. Достоинствами этого способа являются простота, высокая производительность, (ломка занимает не более 11,5 мин) и одностадийность, а также достаточно высокое качество, т.к. кристаллы не смещаются относительно друг друга.
Таблица 5 - Глубина нарушенного слоя пластин кремния после различных видов механической обработки
Вид обработки |
Условия обработки |
Глубина нарушенного слоя, мкм |
|
Резка алмазным кругом с внутренней режущей кромкой |
Зернистость режущей кромки АСМ 60/53; n=4000мин-1; подача 1мм/мин |
20 - 30 |
|
Шлифование |
Свободный абразив: суспензия порошка ЭБМ-10 ЭБМ-5 |
11 - 15 7 - 9 |
|
Шлифование, полирование |
Связный абразивный круг АСМ - 28 Алмазная паста: АСМ - 3 АСМ - 1 АСМ - 0,5 |
14 - 16 6 - 9 5 - 6 1 - 2 |
|
Химико-механическое полирование |
Суспензия аэросила, SiO2 (зерно 0,04 - 0,3 мкм) Суспензия цеолита |
1 - 1,5 1 - 2 |
5. Формирование p - n переходов
Сплавление полупроводникового кристалла с металлами или их сплавами - это технологический процесс, который состоит в том, что в пластину вплавляют металл или сплав металла, содержащий примеси, необходимые для создания зоны с электропроводностью требуемого типа. Для сплавления полупроводника с металлами на пластину полупроводника помещают таблетку примеси. Затем систему нагревают до температуры, при которой примесь плавится и начинается частичное растворение материала полупроводника в примесном материале. После охлаждения в полупроводнике образуется область с электропроводностью требуемого типа. Такие переходы относятся к числу ступенчатых. Они имеют высокую надежность, работоспособность при больших обратных напряжениях, имеют низкое собственное сопротивление.
Электрохимический метод получения переходов. Основан на электрохимическом осаждении металла на поверхность полупроводника, в результате образуется контакт металл - полупроводник, свойства которого зависят от характеристик материалов. Этот метод применяют для получения элементов с минимальными расстояниями между переходами.
Диффузия - процесс, с помощью которого на поверхности или внутри пластины получают p - или n - области путем введения акцепторных или донорных примесей. Проникновение примесей в внутрь пластины полупроводника происходит за счет диффузии атомов, находящихся в составе паров, в атмосферу которых помещена нагретая пластина. Наибольшая концентрация примеси находится у поверхности пластины, с увеличением расстояния от поверхности вглубь пластины концентрация примеси уменьшается. P - n переход возникает в области, где концентрация носителей заряда близка к той, которая имеется у материала без примеси (при собственной электропроводности).
6. Присоединение металлических выводов к пластине полупроводника
В современных полупроводниковых приборах и интегральных микросхемах, у которых размер контактных площадок составляет несколько десятков микрометров, процесс присоединения выводов является одним из самых трудоемких технологических операций.
В настоящее время для присоединения выводов к контактным площадкам интегральных схем используют три разновидности сварки: термокомпрессионную, электроконтактную и ультразвуковую.
Термокомпрессионная сварка позволяет присоединять электрические выводы толщиной несколько десятков микрометров к омическим контактам кристаллов диаметром не менее 20-50 мкм, причем электрический вывод можно присоединить непосредственно к поверхности полупроводника без промежуточного металлического покрытия следующим образом. Тонкую золотую или алюминиевую проволоку прикладывают к кристаллу и прижимают нагретым стержнем. После небольшой выдержки проволока оказывается плотно сцепленной с поверхностью кристалла. Сцепление происходит вследствие того, что даже при небольших удельных давлениях, действующих на кристалл полупроводника и не вызывающих его разрушения, локальное давление в микро выступах на поверхности может быть весьма большим. Это приводит к пластической деформации выступов, чему способствует подогрев до температуры ниже эвтектической для данного металла и полупроводника, что не вызывает каких-либо изменений в структуре кристалла. Происходящая деформация (затекание) микро выступов и микро впадин обусловливает прочную адгезию и надежный контакт, вследствие вандерваальсовых сил сцепления, а с повышением температуры между соединяемыми материалами более вероятна химическая связь. Термокомпрессионная сварка имеет следующие преимущества:
соединение деталей происходит без расплавления свариваемых материалов; удельное давление, прикладываемое к кристаллу, не приводит к механическим повреждениям полупроводникового материала;
соединения получают без загрязнений, так как не используют припои и флюсы. К недостаткам следует отнести малую производительность процесса. Термокомпрессионную сварку можно осуществлять путем соединений внахлест и встык. При сварке внахлест электрический проволочный вывод, как отмечалось, накладывают на контактную площадку кристалла полупроводника и прижимают к нему специальным инструментом до возникновения деформации вывода. Ось проволочного вывода при сварке располагают параллельно плоскости контактной площадки. При сварке встык проволочный вывод приваривают торцом к контактной площадке. Ось проволочного вывода в месте присоединения перпендикулярна плоскости контактной площадки.
Сварка внахлест обеспечивает прочное соединение кристалла полупроводника с проволочными выводами из золота, алюминия, серебра и других пластичных металлов, а сварка встык-только с выводами из золота. Толщина проволочных выводов может составлять 15-100 мкм. Присоединять выводы можно как к чистым кристаллам полупроводника, так и к контактным площадкам, покрытым слоем напылённого золота или алюминия. При использовании чистых поверхностей кристалла увеличивается переходное сопротивление контакта, и ухудшаются электрические параметры приборов.
Элементы, подлежащие термокомпрессионной сварке, проходят определенную технологическую обработку. Поверхность кристалла полупроводника, покрытую слоем золота или алюминия, обезжиривают.
Золотую проволоку отжигают при 300-600°С в течение 5-20 мин в зависимости от способа соединения деталей. Алюминиевую проволоку протравливают в насыщенном растворе едкого натра при 80°С в течение 1-2 мин, промывают в дистиллированной воде, и сушат. Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки, Удельное давление выбирают в зависимости от допустимого напряжения сжатия кристалла полупроводника и допустимой деформации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.
Электроконтактная сварка. Этот процесс широко используется для герметизации корпусов полупроводниковых приборов и интегральных микросхем. Она основана на расплавлении определенных частей соединяемых металлических деталей за счет прохождения через них электрического тока. Сущность процесса электроконтактной сварки состоит в том, что к свариваемым деталям подводят два электрода, на которые подают определенное напряжение. Так как площадь электродов значительно меньше, чем площадь свариваемых деталей, то при прохождении через всю систему электрического тока в месте соприкосновения свариваемых деталей, 'находящихся под электродами, выделяется большое количество теплоты. Это происходит за счет большой плотности тока в малом объеме материала свариваемых деталей. Большие плотности тока разогревают контактные участки до расплавления определенных зон исходных материалов.
При прекращении действия тока температура контактных участков снижается, что влечет за собой остывание расплавленной зоны и ее рекристаллизацию. Полученная таким образом рекристаллизационная зона герметично соединяет однородные и разнородные металлические детали друг с другом. Форма сварного шва зависит от геометрической конфигурации рабочих электродов. Если электроды выполнены виде заостренных стержней, то сварка получается точечной. Если электроды в виде трубки, то сварочный шов имеет форму кольца. При пластинчатой форме электродов сварочный шов имеет вид полосы.
Ультразвуковая сварка является разновидностью полноценного сварочного процесса. Соединяемые элементы следует располагать близко друг к другу, причем один из них должен быть надежно закреплен. После этого сварочный аппарат создает механическое давление на второй, подвижный контакт и формирует поток ультразвуковой энергии. Колебательные движения соединяемых деталей приводят к удалению неоднородностей и оксидных пленок с их поверхностей. Поверхности раздела кристаллов сближаются на атомное расстояние, что приводит к сильному притяжению поверхностных атомов и созданию сварного соединения без нагрева металлов до температуры плавления [4]. При этом не требуется применения расходных материалов, таких как припой или соединительные проводники. Исключается также технологический этап покрытия или очистки поверхности, таким образом УЗ-сварка является одним из самых экологически чистых способов соединения. Технология ультразвуковой сварки известна с 1952 года [4], она достаточно широко используется в автомобильной отрасли для формирования автомобильных монтажных жгутов, пружинных контактов реле и ряда других применений, в том числе и сварки проводников. Применение УЗ-технологии для соединения одинаковых материалов, например из меди марки OFHC, обеспечивает максимально возможную электропроводность контакта. Если свариваемые поверхности имеют одинаковый коэффициент температурного расширения (КТР), то исключается возможность расслоения соединения и обеспечивается долговременная стабильность его свойств.
7. Сборка и герметизация
Сборка полупроводниковых приборов и интегральных микросхем является наиболее трудоемким и ответственным технологическим этапом в общем цикле их изготовления. От качества сборочных операций в сильной степени зависят стабильность электрических параметров и надежность готовых изделий. Этап сборки начинается после завершения групповой обработки полупроводниковых пластин по планарной технологии и разделения их на отдельные элементы (кристаллы). Эти кристаллы, могут иметь простейшую (диодную или транзисторную) структуру или включать в себя сложную интегральную микросхему (с большим количеством активных и пассивных элементов) и поступать на сборку дискретных, гибридных или монолитных композиций.
Трудность процесса сборки заключается в том, что каждый класс дискретных приборов и ИМС имеет свои конструктивные особенности, которые требуют вполне определенных сборочных операций и режимов их проведения.
Процесс сборки включает в себя три основные технологические операции: присоединение кристалла к основанию корпуса; присоединение токоведущих выводов к активным и пассивным элементам полупроводникового кристалла к внутренним элементам корпуса; герметизация кристалла от внешней среды.
Присоединение кристалла полупроводникового прибора или ИМС к основанию корпуса проводят с помощью процессов пайки, приплавления с использованием эвтектических сплавов и приклеивания.
Основным требованием к операции присоединения кристалла является создание соединения кристалл - основание корпуса, обладающего высокой механической прочностью, хорошей электро - и теплопроводностью.
Пайка - процесс соединения двух различных деталей без их расплавления с помощью третьего компонента, называемого припоем. Особенностью процесса пайки является то, что припой при образовании паяного соединения находится в жидком состоянии, а соединяемые детали - в твердом. Сущность процесса пайки состоит в следующем. Если между соединяемыми деталями поместить прокладки из припоя и всю композицию нагреть до температуры плавления припоя, то будут иметь место следующие три физических процесса. Сначала расплавленный припой смачивает поверхности соединяемых деталей. Далее в смоченных местах происходят процессы межатомного взаимодействия между припоем и каждым из двух смоченных им материалов. При смачивании возможны два процесса: взаимное растворение смоченного материала и припоя или их взаимная диффузия. После охлаждения нагретой композиции припой переходит в твердое состояние. При этом образуется прочное паяное соединение между исходными материалами и припоем. Процесс пайки хорошо изучен, он прост и не требует сложного и дорогостоящего оборудования. При серийном выпуске изделий электронной техники припайка полупроводниковых кристаллов к основаниям корпусов производится в конвейерных печах, обладающих высокой производительностью. Пайка проводится в восстановительной (водород) или нейтральной (азот, аргон) среде. В печи загружают многоместные кассеты, в которые предварительно помещают основания корпусов, навески припоя и полупроводниковые кристаллы. При движении конвейерной ленты кассета с соединяемыми деталями последовательно проходит зоны нагрева, постоянной температуры, охлаждения. Скорость движения кассеты и температурный режим задают и регулируют в соответствии с технологическими и конструктивными особенностями конкретного типа полупроводникового прибора или ИМС.
Приклеивание - это процесс соединения элементов друг с другом, основанный на клеящих свойствах некоторых материалов, которые позволяют получать механически прочные соединения между полупроводниковыми кристаллами и основаниями корпусов (металлическими, стеклянными или керамическими). Прочность склеивания определяется силой сцепления между клеем и склеиваемыми поверхностями элементов. Склеивание различных элементов интегральных схем дает возможность соединять самые разнообразные материалы в различных сочетаниях, упрощать конструкцию узла, уменьшать его массу, снижать расход дорогостоящих материалов, не применять припоев и эвтектических сплавов, значительно упрощать технологические процессы сборки самых сложных полупроводниковых приборов и ИМС.
В результате приклеивания можно получать арматуры и сложные композиции с электроизоляционными, оптическими и токопроводящими свойствами. Присоединение кристаллов к основанию корпуса с помощью процесса приклеивания незаменимо при сборке и монтаже элементов гибридных, монолитных и оптоэлектронных схем.
При приклеивании кристаллов на основания корпусов применяют различные типы клеев: изоляционные, токопроводящие, светопроводящие и теплопроводящие. По активности взаимодействия между клеем и склеиваемыми поверхностями различают полярные (на основе эпоксидных смол) и неполярные (на основе полиэтилена).
Качество процесса приклеивания в значительной степени зависит не только от свойств клея, но и от состояния поверхностей склеиваемых элементов. Для получения прочного соединения необходимо тщательно обработать и очистить склеиваемые поверхности. Важную роль в процессе склеивания играет температура. Так, при склеивании элементов конструкций, которые не подвергаются в последующих технологических операциях воздействию высоких температур, можно использовать клеи холодного отверждения на эпоксидной основе. Для приклеивания кремниевых кристаллов к металлическим или керамическим основаниям корпусов обычно используют клей ВК-2, представляющий собой раствор кремний - органической смолы в органическом растворителе с мелко диспергированным асбестом в качестве активного наполнителя или ВК-32-200, в котором в качестве наполнителя используют стекло или кварц. Технологический процесс приклеивания полупроводниковых кристаллов проводят в специальных сборочных кассетах, обеспечивающих нужную ориентацию кристалла на основании корпуса и необходимое прижатие его к основанию. Собранные кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при комнатной температуре.
Подобные документы
Физические элементы полупроводниковых приборов. Электрический переход. Резкий переход. Плоскостной переход. Диффузионный переход. Планарный переход. Явления в полупроводниковых приборах. Виды полупроводниковых приборов. Элементы конструкции.
реферат [17,9 K], добавлен 14.02.2003Полупроводниковые материалы, изготовление полупроводниковых приборов. Переход электрона из валентной зоны в зону проводимости. Незаполненная электронная связь в кристаллической решетке полупроводника. Носители зарядов, внешнее электрическое поле.
лекция [297,5 K], добавлен 19.11.2008Рассмотрение принципов работы полупроводников, биполярных и полевых транзисторов, полупроводниковых и туннельных диодов, стабилитронов, варикапов, варисторов, оптронов, тиристоров, фототиристоров, терморезисторов, полупроводниковых светодиодов.
реферат [72,5 K], добавлен 14.03.2010Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016Изучение конструкции и принципов работы опто-электрических полупроводниковых преобразователей энергии. Наблюдение специфического отличия статических характеристик приборов от просто полупроводниковых аналогов на примере оптоэлектронной пары (оптронов).
лабораторная работа [636,9 K], добавлен 24.06.2015Разработка прибора, предназначенного для изучения полупроводниковых диодов. Классификация полупроводниковых диодов, характеристика их видов. Принципиальная схема лабораторного стенда по изучению вольтамперных характеристик полупроводниковых диодов.
курсовая работа [1,2 M], добавлен 20.11.2013Применение компьютерных программ моделирования для изучения полупроводниковых приборов и структур. Оценка влияния режимов работы и внешних факторов на их основные электрические характеристики. Изучение особенностей основных полупроводниковых приборов.
дипломная работа [4,8 M], добавлен 16.05.2013Параметры интегральных полупроводниковых диодов и биполярных транзисторов в интервале температур 250-400К. Величина контактной разности потенциалов. Толщина квазинейтральной области. Глубина залегания эмиттерного перехода. Транзисторы с p-n переходом.
курсовая работа [270,1 K], добавлен 19.02.2013Эксплуатация полупроводниковых преобразователей и устройств: недостатки полупроводниковых приборов, виды защит. Статические преобразователи электроэнергии: трансформаторы. Назначение, классификация, виды, конструкция. Работа трансформатора под нагрузкой.
лекция [190,2 K], добавлен 20.01.2010Особенности и основные этапы производства полупроводниковых микросхем на биполярных транзисторах. Описание этапов планарно-эпитаксиальной технологии в производстве полупроводниковых ИС. Основные сведения об элементах структур полупроводниковых ИС и БИС.
презентация [155,5 K], добавлен 24.05.2014