Кратчайшие расстояния между пунктами транспортной сети с использованием компьютерной программы NAKRA

Описание района перевозок и формирование транспортной сети региона. Определение кратчайших путей следования, потребности в транспорте для работы на маршрутах. Расчет технико-эксплуатационных показателей использования автомобильных транспортных средств.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 24.01.2016
Размер файла 458,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кратчайшие расстояния между пунктами транспортной сети с использованием компьютерной программы NAKRA

Содержание

Введение

1. Описание района перевозок и формирование транспортной сети региона

2. Определение кратчайших расстояний и кратчайших путей следования

3. Маршрутизация перевозок мелкопартийных грузов

4. Определение потребности в транспортных средствах для работы на маршрутах

5. Расчет технико-эксплуатационных показателей использования автомобильных транспортных средств

6. Сравнительный анализ существующего и предлагаемого вариантов маршрутов

Заключение

Список литературы

Приложение А

Приложение Б

Введение

Целью курсовой работы является рассмотрение вопросов оптимизации транспортных потоков при перевозке грузов с использованием автомобильного транспорта.

Экономика большинства государств, а в частности и нашей страны не может нормально функционировать без хорошо налаженной и развитой транспортной системы. В настоящее время среди всех видов транспорта особое место принадлежит автомобильному, как способному с наибольшей эффективностью удовлетворять потребности производящих и торговых фирм в перевозках грузов.

Поскольку такие перевозки носят массовый и регулярный характер, то в целях успешной работы автотранспорт должен совершенствовать организацию перевозочного процесса и управлять им и именно поэтому целесообразно производить планирование и расчёт основных технических и экономических показателей работы транспорта.

В данной курсовой работе производится определение наиболее оптимального плана развоза 3-х видов груза в 6 магазинов города Гомеля.

Для планирования перевозок грузов необходимо решить следующие задачи:

ѕ определить кратчайшие расстояния между пунктами транспортной сети;

ѕ оптимизировать грузовые потоки;

ѕ маршрутизировать перевозки грузов;

ѕ выбрать подвижной состав для движения по маршрутам;

рассчитать основные технико-эксплуатационные показатели работы подвижного состава при осуществлении перевозок.

1. Описание района перевозок и формирование транспортной сети региона

В практике грузовых перевозок автомобильным транспортом исходными данными выступают: улично-дорожная сеть с указанием расположения пункта погрузки и пунктов выгрузки (приложение А); объемы поставки номенклатуры грузов каждому конечному потребителю (таблица 1.1); имеющийся парк грузовых автотранспортных средств (таблица 1.2).

Таблица 1.1 - Номенклатура и количества доставляемого груза

Наименование груза

Класс груза

Пункт назначения

Масса, тонн

Молочные изделия в бумажных пакетах, затаренные в ящиках

3

М1

0,22

М2

0,25

М3

0,51

М4

0,28

М5

0,42

М6

0,47

Мясо кур в ящиках

1

М1

0,31

М2

0,32

М3

0,34

М4

0,29

М5

0,28

М6

0,26

Вода минеральная в полиэтиленовых ящиках

2

М1

0,15

М2

0,13

М3

0,16

М4

0,15

М5

0,1

М6

0,19

Таблица 1.2 - Имеющийся парк автомобильных транспортных средств

Марка автомобиля

Грузоподъемность, тонн

Количество, ед.

МАЗ 437040-020

4,7

2

ЗИЛ 5301ВА

2,3

5

Районом перевозок является Советский район города Гомеля. В транспортную сеть входят городские улицы и магазины. Крупнейшими улицами, входящими в состав транспортной сети, являются: ул. Бочкина, ул. Богдана Хмельницкого, ул. Барыкина. Средняя скорость движения по улицам транспортной сети 25 км/ч. Все улицы в данном районе имеют усовершенствованное покрытие.

В 1-ом пункте находится база (Б), из которой осуществляется поставка товаров в магазины. Магазины расположены в пунктах 1-6.

По транспортной сети осуществляется перевозка 3-х видов груза.

Молочные изделия в бумажных пакетах, затаренные в ящиках являются грузом третьего класса, имеет средний коэффициент использования грузоподъемности =0,6. Объем данного груза, предназначенный к перевозке - 2150 кг. Объем потребления данного груза в грузопоглащающих пунктах составляет: М1 - 220 кг; М2 - 250 кг; М3 - 510 кг; М4 - 280 кг; М5 - 420 кг; М6 -470 кг.

Второй вид груза - мясо кур в ящиках, является грузом первого класса использования грузоподъемности с коэффициентом использования грузоподъемности =1. Объем этого груза, предназначенный к перевозке - 1800кг. Объем потребления груза в грузопоглащающих пунктах составляет: М1 - 310 кг; М2 - 320 кг; М3 - 340 кг; М4 - 290 кг; М5 - 280 кг; М6- 260 кг.

Третий вид перевозимого груза - вода минеральная в полиэтиленовых ящиках. Данный груз является грузом второго класса со средним коэффициентом использования грузоподъемности = 0,8. Объем данного груза, предназначенный к перевозке - 1010 кг. Объем потребления груза 3-го типа в грузопоглащающих пунктах составляет: М1 - 150 кг; М2 - 130 кг; М3 - 160 кг; М4 - 150 кг; М5 - 100 кг; М6 - 190 кг.

Для выполнения перевозок могут использоваться автомобильные транспортные средства 2-х марок:

- МАЗ 437040-020, грузоподъемностью 4,7 т, в количестве 2 единиц;

- ЗИЛ 5301ВА, грузоподъемностью 2,3 т, в количестве 5 единиц.

2. Определение кратчайших расстояний и кратчайших путей следования

Для того, чтобы определить кратчайшие расстояния между пунктами транспортной сети региона, определим расстояния между пунктами транспортировки грузов и сведём в таблицу 2.1

Таблица 2.1- Расстояния между пунктами транспортировки грузов

Звено

Длина, м

Звено

Длина, м

Б-1

3500

17-6

400

1-7

3000

6-18

3300

7-2

2000

18-1

3500

2-8

500

1-29

1000

8-9

1000

29-30

400

9-10

700

30-31

500

10-11

1000

31-32

400

11-3

700

32-33

300

3-12

2000

33-4

1700

12-4

3000

29-34

3000

4-13

500

31-35

3000

13-14

2500

32-36

3000

15-14

2500

7-34

1000

5-15

1000

34-35

1000

5-16

2000

35-36

700

16-17

1500

36-37

1000

37-38

700

28-13

800

34-8

2000

18-23

1000

35-9

2000

23-24

400

36-10

2000

24-25

500

37-11

2000

25-26

400

23-29

3500

26-27

1300

24-30

3500

27-14

800

25-31

3500

20-24

1000

26-32

3500

21-26

1000

27-28

2500

17-19

2200

19-20

400

16-22

1000

20-21

800

22-15

2000

22-21

1200

Определение кратчайших расстояний между пунктами транспортной сети является важной практической задачей организации перевозок, так как дает возможность снизить транспортные издержки на перевозку грузов за счет минимизации общего пробега подвижного состава и сокращения времени доставки грузов.

Задача определения кратчайших расстояний между пунктами транспортной сети является задачей многовариантной, которая имеет множество допустимых решений. Для нахождения оптимального решения задачи используются следующие методы:

1) метод потенциалов;

2) табличный метод;

3) определение кратчайших расстояний на ЭВМ.

Для определения кратчайших расстояний между пунктами транспортной сети воспользуемся специальным программным обеспечением. При имеющихся длинах звеньев получили матрицу кратчайших расстояний (таблица 2.2).

Таблица 2.2- Матрица кратчайших расстояний между пунктами транспортной сети района

Начальный пункт

Конечный пункт

Б

М1

М2

М3

М4

М5

М6

Б

-

3500

8500

12400

7800

14200

10300

М1

3500

-

5000

8900

4300

10700

6800

М2

8500

5000

-

3900

8800

15300

11800

М3

12400

8900

3900

-

5000

11500

14900

М4

7800

4300

8800

5000

-

6500

9900

М5

14200

10700

15300

11500

6500

-

3900

М6

10300

6800

11800

14900

9900

3900

-

3. Маршрутизация перевозок мелкопартийных грузов

Выберем маршруты движения автомобилей. Для этого необходимо определить оптимальную последовательность объезда всех грузопоглащающих узлов транспортной сети, т.е. решить задачу коммивояжера. Исходными данными для этого выступает матрица кратчайших расстояний (таблица 2.1).

Приведем матрицу расстояний по строкам (таблица 3.1)

Таблица 3.1 - Приведение матрицы по строкам

Из/В

Б

М1

М2

М3

М4

М5

М6

?i

Б

-

3500

8500

12400

7800

14200

10300

3500

М1

3500

-

5000

8900

4300

10700

6800

3500

М2

8500

5000

-

3900

8800

15300

11800

3900

М3

12400

8900

3900

-

5000

11500

14900

3900

М4

7800

4300

8800

5000

-

6500

9900

4300

М5

14200

10700

15300

11500

6500

-

3900

3900

М6

10300

6800

11800

14900

9900

3900

-

3900

Приведем матрицу расстояний по столбцам (таблица 3.2)

Таблица 3.2 - Приведение матрицы по столбцам

Из/В

Б

М1

М2

М3

М4

М5

М6

Б

-

0

5000

8900

4300

10700

6800

М1

0

-

1500

5400

800

7200

3300

М2

4600

1100

-

0

4900

11400

7900

М3

8500

5000

0

-

1100

7600

11000

М4

3500

0

4500

700

-

2200

5600

М5

10300

6800

11400

7600

2600

-

0

М6

6400

2900

7900

11000

6000

0

-

?i

0

0

0

0

800

0

0

Полностью приведенная матрица приведена в таблице 3.3.

Таблица 3.3 - Полностью приведенная матрица

Из/В

Б

М1

М2

М3

М4

М5

М6

Б

-

0

5000

8900

3500

10700

6800

М1

0

-

1500

5400

0

7200

3300

М2

4600

1100

-

0

4100

11400

7900

М3

8500

5000

0

-

300

7600

11000

М4

3500

0

4500

700

-

2200

5600

М5

10300

6800

11400

7600

1800

-

0

М6

6400

2900

7900

11000

5200

0

-

Определим нижнюю границу множества Гамильтоновых контуров:

= 27700

Каждый нуль в приведенной матрице (см. таблицу 1.6) условно заменяем на и находим сумму констант приведения . Значения записываем в соответствующие клетки рядом с нулями (таблица 3.4).

Таблица 3.4 - Определение сумм констант приведения

Из/В

Б

М1

М2

М3

М4

М5

М6

Б

-

0(3500)

5000

8900

3500

10700

6800

М1

0(3500)

-

1500

5400

0(300)

7200

3300

М2

4600

1100

-

0(1800)

4100

11400

7900

М3

8500

5000

0(1800)

-

300

7600

11000

М4

3500

0(700)

4500

700

-

2200

5600

М5

10300

6800

11400

7600

1800

-

0(5100)

М6

6400

2900

7900

11000

5200

0(5100)

-

Из таблицы 3.4 видно, что наибольшее значение суммы констант приведения получается на пересечении 6й строки и 7-го столбца и 7й строки и 6го столбца и составляет 5100. Рассмотрим первый вариант.

Априорно исключаем из гамильтонова контура дугу (6,7), заменяя элементы а7,6 = 0 в матрице расстояний на . В результате исключения данной дуги будет образовано подмножество гамильтоновых контуров {}.

Приводим полученную матрицу расстояний и определяем нижнюю границу подмножества гамильтоновых контуров {}.

Таблица 3.5 - Исключение 6 строки и 7 столбца

Из/В

Б

М1

М2

М3

М4

М5

Б

0

5000

8900

3500

10700

М1

0

1500

5400

0

7200

М2

4600

1100

0

4100

11400

М3

8500

5000

0

300

7600

М4

3500

0

4500

700

2200

М6

6400

2900

7900

11000

5200

Таблица 3.6 - Приведение матрицы по строкам

Из/В

Б

М1

М2

М3

М4

М5

?i

Б

0

5000

8900

3500

10700

0

М1

0

1500

5400

0

7200

0

М2

4600

1100

0

4100

11400

0

М3

8500

5000

0

300

7600

0

М4

3500

0

4500

700

2200

0

М6

6400

2900

7900

11000

5200

2900

Таблица 3.7- Приведение матрицы по столбцам

Из/В

Б

М1

М2

М3

М4

М5

Б

0

5000

8900

3500

10700

М1

0

1500

5400

0

7200

М2

4600

1100

0

4100

11400

М3

8500

5000

0

300

7600

М4

3500

0

4500

700

2200

М6

3500

0

5000

8100

2300

?i

0

0

0

0

0

2200

Тогда а Матрица, полученная после приведения по строкам и столбцам приведена в таб. 3.8.

Каждый нуль в полученной матрице условно заменяем на и находим сумму констант приведения . Значения записываем в соответствующие клетки рядом с нулями (таблица 3.9).

Таблица 3.8 - Полностью приведенная матрица

Из/В

Б

М1

М2

М3

М4

М5

Б

0

5000

8900

3500

8500

М1

0

1500

5400

0

5000

М2

4600

1100

0

4100

9200

М3

8500

5000

0

300

5400

М4

3500

0

4500

700

0

М6

3500

0

5000

8100

2300

Таблица 3.9 - Определение сумм констант приведения

Из/В

Б

М1

М2

М3

М4

М5

Б

0(3500)

5000

8900

3500

8500

М1

0(3500)

1500

5400

0(300)

5000

М2

4600

1100

0(1800)

4100

9200

М3

8500

5000

0(1800)

300

5400

М4

3500

0(0)

4500

700

0(5000)

М6

3500

0(3500)

5000

8100

2300

Из таблицы 3.9 видно, что наибольшее значение суммы констант приведения получается на пересечении 5 строки и 6 столбца и составляет 5000. Априорно исключаем из гамильтонова контура дугу (5,6) и проводим расчеты аналогичные предыдущим.

Таблица 3.10 - Исключение 5й строки и 6го столбца

Из/В

Б

М1

М2

М3

М4

Б

0

5000

8900

3500

М1

0

1500

5400

0

М2

4600

1100

0

4100

М3

8500

5000

0

300

М6

3500

0

5000

8100

Таблица 3.11 - Приведение матрицы по строкам

Из/В

Б

М1

М2

М3

М4

?i

Б

0

5000

8900

3500

0

М1

0

1500

5400

0

0

М2

4600

1100

0

4100

0

М3

8500

5000

0

300

0

М6

3500

0

5000

8100

0

Таблица 3.12 - Приведение матрицы по столбцам

Из/В

Б

М1

М2

М3

М4

Б

0

5000

8900

3500

М1

0

1500

5400

0

М2

4600

1100

0

4100

М3

8500

5000

0

300

М6

3500

0

5000

8100

?i

0

0

0

0

0

Тогда а Матрица, полученная после приведения по строкам и столбцам приведена в таблице 3.13.

Таблица 3.13 - Полностью приведенная матрица

Из/В

Б

М1

М2

М3

М4

Б

0

5000

8900

3500

М1

0

1500

5400

0

М2

4600

1100

0

4100

М3

8500

5000

0

300

М6

3500

0

5000

8100

Каждый нуль в полученной матрице условно заменяем на и находим сумму констант приведения . Значения записываем в соответствующие клетки рядом с нулями (таблица 3.14).

Таблица 3.14 - Определение сумм констант приведения

Из/В

Б

М1

М2

М3

М4

Б

0(3500)

5000

8900

3500

М1

0(3500)

1500

5400

0(300)

М2

4600

1100

0(6500)

4100

М3

8500

5000

0(1800)

300

М6

3500

0

5000

8100

Из таблицы 3.14 видно, что наибольшее значение суммы констант приведения получается на пересечении 3 строки и 4 столбца и составляет 6500. Априорно исключаем из гамильтонова контура дугу (3,4), заменяя элемент а4,3 = 3100 в матрице расстояний на и проводим расчеты аналогичные предыдущим (таблицы 3.15-3.18)

Таблица 3.15 - Исключение 3 строки и 4 столбца

Из/В

Б

М1

М2

М4

Б

0

5000

3500

М1

0

1500

0

М3

8500

5000

300

М6

3500

0

5000

Таблица 3.16 - Приведение матрицы по строкам

Из/В

Б

М1

М2

М4

?i

Б

0

5000

3500

0

М1

0

1500

0

0

М3

8500

5000

300

300

М6

3500

0

5000

0

Таблица 3.17 - Приведение матрицы по столбцам

Из/В

Б

М1

М2

М4

Б

0

5000

3500

М1

0

1500

0

М3

8200

4700

0

М6

3500

0

5000

?i

0

0

1500

0

Тогда а Матрица, полученная после приведения по строкам и столбцам приведена в таб. 3.18.

Каждый нуль в полученной матрице условно заменяем на и находим сумму констант приведения . Значения записываем в соответствующие клетки рядом с нулями (таблица 3.19).

Таблица 3.18 - Полностью приведенная матрица

Из/В

Б

М1

М2

М4

Б

0

3500

3500

М1

0

0

0

М3

8200

4700

0

М6

3500

0

3500

Таблица 3.19 - Определение сумм констант приведения

Из/В

Б

М1

М2

М4

Б

0(3500)

3500

3500

М1

0(3500)

0(3500)

0(0)

М3

8200

4700

0(4700)

М6

3500

0

3500

Из таблицы 3.19 видно, что наибольшее значение суммы констант приведения получается на пересечении 3 строки и 3 столбца и составляет 4700.

Априорно исключаем из гамильтонова контура дугу (3,4), заменяя элемент а4,3 = 3500 в матрице расстояний на и проводим расчеты аналогичные предыдущим (таблицы 3.20-3.23)

Таблица 3.20 - Исключение 4 строки и 3 столбца

Из/В

Б

М1

М2

Б

0

3500

М1

0

0

М6

3500

0

Таблица 3.21 - Приведение матрицы по строкам

Из/В

Б

М1

М2

Б

0

3500

0

М1

0

0

0

М6

3500

0

0

Таблица 3.22 - Приведение матрицы по столбцам

Из/В

Б

М1

М2

Б

0

3500

М1

0

0

М6

3500

0

0

0

0

Тогда а Матрица, полученная после приведения по строкам и столбцам приведена в таблице 3.23.

Таблица 3.23 - Полностью приведенная матрица

Из/В

Б

М1

М2

Б

0

3500

М1

0

0

М6

3500

0

Каждый нуль в полученной матрице условно заменяем на и находим сумму констант приведения . Значения записываем в соответствующие клетки рядом с нулями (таблица 3.24).

Таблица 3.24 - Определение сумм констант приведения

Из/В

Б

М1

М2

Б

0(3500)

3500

М1

0(3500)

0(3500)

М6

3500

0(3500)

Из таблицы 3.24 видно, что мы получили 4 одинаковых максимальных суммы констант приведения (3500). Это означает что алгоритм разветвляется и мы должны рассмотреть все получившиеся варианты поочередно.Рассмотрим вариант (1,2).

Априорно исключаем из гамильтонова контура дугу (1,2), заменяя элемент а2,1 = 0 в матрице расстояний на и проводим расчеты аналогичные предыдущим (таблицы 3.25-3.28)

Таблица 3.25 - Исключение первой строки и второго столбца

Из/В

Б

М2

М1

0

0

М6

3500

Текущая Нижняя граница=34600

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтеные элементы матрицы к нижней границе), и добавляем к маршруту комивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (М5,М6), (М4,М5), (М2, М3), (М3, М4), (Б, М1), (М1, М2), (М6, Б)

В приложении Б приведем расчеты всех остальных разветвлений, рассчитанных с помощью специального программного обеспечения.

После того, как рассмотрели все возможные ветви алгоритма, выберем из полученных в результате рассмотрения каждой ветви значений нижней границы - минимальное. Это и будет оптимальной длиной пути коммивояжера.

Минимальное значение имеет НГр=38100.

Соответствующий оптимальный контур включает дуги: (М5,М6), (М4,М5), (М2, М3), (М3, М4), (Б, М1), (М1, М2), (М6, Б).

Оптимальный маршрут: Б-1-2-3-4-5-6-Б

4. Определение потребности в транспортных средствах для работы на маршрутах

Для определения потребности в транспортных средствах для работы на маршрутах необходимо определить массу завозимых в каждый пункт выгрузки грузов с учетом коэффициента использования грузоподъемности. Соответствующие расчеты, с учетом исходных данных приведены в таб. 3.19.

Таблица 3.19 Определение количества завозимого в каждый пункт груза

Пункт выгрузки

Груз

Масса груза, т

Коэффициент использования грузоподъемности

Масса груза с учетом коэффициента использования грузоподъемности, т

Общая масса груза, то

М1

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,22

0,6

0,367

0,865

Мясо кур в ящиках

0,31

1

0,31

Вода минеральная в полиэтиленовых ящиках

0,15

0,8

0,188

М2

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,25

0,6

0,417

0,9

Мясо кур в ящиках

0,32

1

0,32

Вода минеральная в полиэтиленовых ящиках

0,13

0,8

0,163

М3

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,51

0,6

0,85

1,39

Мясо кур в ящиках

0,34

1

0,34

Вода минеральная в полиэтиленовых ящиках

0,16

0,8

0,2

М4

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,28

0,6

0,467

0,945

Мясо кур в ящиках

0,29

1

0,29

Вода минеральная в полиэтиленовых ящиках

0,15

0,8

0,188

М5

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,42

0,6

0,7

1,105

Мясо кур в ящиках

0,28

1

0,28

Вода минеральная в полиэтиленовых ящиках

0,1

0,8

0,125

М6

Молочные изделия в бумажных пакетах, затаренные в ящиках

0,47

0,6

0,783

1,281

Мясо кур в ящиках

0,26

1

0,26

Вода минеральная в полиэтиленовых ящиках

0,19

0,8

0,238

Итого

-

4,83

-

6,486

Согласно исходным данным, перевозка может быть осуществлена автомобилями 4-х марок: ЗИЛ-5301АО, грузоподъемностью 3 т; ГАЗ-3302, грузоподъемностью 1,5 т.; ЗИЛ-5301ВА, грузоподъемностью 2,3 т; МАЗ 437040-020, грузоподъемностью 4,7 т. Из таблицы 3.19 видно, что общая масса доставляемого груза, с учетом коэффициента использования грузоподъемности составляет 6,486 т. Исходя из вышесказанного, можно утверждать, что в данном случае необходимо использовать 1 автомобиль марки ЗИЛ-5301ВА и 1 автомобиль марки МАЗ 437040-020. Во втором перевозим: молочные изделия в бумажных пакетах и воду, затаренные в ящиках, в первом: мясо кур в ящиках. Такое утверждение основано на следующих умозаключениях:

- должен быть перевезен весь груз;

- приоритет необходимо отдавать автомобилям большей грузоподъемности, при этом должно обеспечиваться максимальное значение степени использования грузоподъемности автомобилей;

- движение автомобилей должно осуществляться по разработанному маршруту с минимизацией выполняемой в ткм транспортной работы.

Рассмотрим существующий маршрут перевозки грузов для первого автомобиля:

Рис. 1

Рассчитаем транспортную работу для данного маршрута и автомобиля:

Рассмотрим существующий маршрут перевозки грузов для второго автомобиля:

Рис. 2

Рассчитаем транспортную работу для данного маршрута и автомобиля:

79378 тм

Рассмотрим предлагаемый маршрут перевозки:

Рис. 3

Рассчитаем транспортную работу для данного маршрута и автомобиля:

Рассмотрим существующий маршрут перевозки грузов для второго автомобиля:

Рис. 4

Рассчитаем транспортную работу для данного маршрута и автомобиля на предлагаемом маршруте:

Общая транспортная работа на двух автомобилях в обратном направлении:

Робщ =

Исходя из того, что транспортная работа на предложенном маршруте больше чем на существующем, выбираем существующий маршрут в прямом направлении Б - М1 - М2 - М3 - М4 - М5- М6 - Б

5. Расчет технико-эксплуатационных показателей использования автомобильных транспортных средств

Для планирования, учета и анализа работы подвижного состава грузового автомобильного транспорта установлена система показателей, позволяющая оценить степень использования ПС и результаты его работы.

К показателям, характеризующим степень использования ПС, относятся следующие показатели:

- коэффициент выпуска подвижного состава на линию, в;

- коэффициент технической готовности подвижного состава, т;

- коэффициент статического использования грузоподъемности, с;

- коэффициент динамического использования грузоподъемности, д;

- коэффициент использования пробега, ;

- средняя длина ездки, Lег;

- среднее расстояние перевозки груза, Lгр;

- время простоя ПС под погрузкой-разгрузкой, tпр;

- время в наряде, Тн;

- техническая скорость движения, Vт;

- эксплуатационная скорость, Vэ.

Расчет данных показателей осуществляется по результатам выполненной маршрутизации перевозок и построенных на основании этого эпюр грузопотоков на маршрутах.

Коэффициент статического использования грузоподъемности определяется отношением фактически перевезенного груза Qф к грузу Q, который можно было бы перевезти при условии полного использования грузоподъемности ПС при груженых ездках

с = Qф / Q. (5.1)

Коэффициент динамического использования грузоподъемности определяется отношением фактически выполненной транспортной работы Wе к возможной работе Wв при условии полного использования грузоподъемности ПС на протяжении всего маршрута с грузом

д = Wе / Wв; (5.2)

We = Qi Lij; (5.3)

Wв = qi Lег. (5.4)

Коэффициент использования пробега подвижного состава определяется отношением производительного пробега к общему за определенный период времени

= Lег / Lм. (5.5)

Среднее расстояние перевозки груза - это средняя дальность транспортирования одной тонны груза, определяется отношением выполненной транспортной работы Wе к объему перевезенного груза Qф

Lгр = Wе / Qф. (5.6)

Маршруты работы автомобилей приведены в таблице 5.1.

Таблица 5.1 - Определение количества завозимого в каждый пункт груза

№ п/п

Автомобиль

Маршрут следования

Длина маршрута, км

Масса доставляемого груза с учетом коэффициента использования грузоподъемности, т

1

МАЗ 437040-020

Б - М1 - М2 - М3 - М4 - М5- М6 - Б

38,100

4,686

2

ЗИЛ- 5301ВА

Б - М1 - М2 - М3 - М4 - М5- М6 - Б

38,100

1,8

3

МАЗ 437040-020

Б - М3 - М2 - М6 - М4 - М1- М5 - Б

67,200

4,686

4

ЗИЛ- 5301ВА

Б - М3- М2 - М6 - М4 - М1- М5 - Б

67,200

1,8

Для первого маршрута:

- коэффициент статического использования грузоподъемности равен

с = 4.686/ 4.7 = 0,997;

- коэффициент динамического использования грузоподъемности равен

We =

;

Wв = 4.7 · 27.8 = 130.66 т·км;

д = 79.378 / 130.66 = 0,6;

- коэффициент использования пробега равен

= 27.800 / 38.100 = 0,73;

- среднее расстояние перевозки груза равно

Lгр = 79.378 / 4.686 = 16,94 км.

Весь последующий расчет технико-эксплуатационных показателей маршрутов выполняется аналогичным образом и представлен в таблице 5.2.

Таблица 5.2 - Показатели использования автомобилей на маршрутах

Маршрут

Lм, км

Q, т

We, т-км

с

д

Lгр

1

38,100

4,686

79,378

0,997

0,6

0,73

16,94

2

38,100

1,8

26,717

0,78

0,418

0,73

14,84

3

38,100

4,686

143,257

0,997

0,575

0,789

30,57

4

38,100

1,8

55,711

0,78

0,457

0,789

30,95

Согласно полученным результатам суммарная транспортная работа по существующему маршруту равна 106,095 т•км в сутки, а суточный объем перевозок составляет 6,486 т. Длина маршрута составляет 38,100 км. Коэффициент статического использования грузоподъемности изменяется от 0,997 до 0,78. Среднее расстояние перевозки груза - 16,94 и 14,84 км.

Суммарная транспортная работа по предложенному маршруту равна 198,968 т•км в сутки, а суточный объем перевозок составляет 6,486 т. Длина маршрута составляет 67,2 км. Коэффициент статического использования грузоподъемности изменяется от 0,997 до 0,78. Среднее расстояние перевозки груза - 39,57 и 30,95 км.

Таким образом данные показатели являются весьма приемлемыми в сложившихся условиях перевозок продукции.

6. Сравнительный анализ существующего и предлагаемого вариантов

Сравним полученные технико-эксплуатационные показатели для существующего и предлагаемого вариантов.

Для существующего варианта:

а) выполненная транспортная работа We = 106,095 т-км;

б) общий пробег Lм = 38,100 км.

Для предлагаемого варианта:

а) выполненная транспортная работа We = 198,968 т-км;

б) общий пробег Lм = 67,200 км.

В результате сравнения видно, что существующий вариант более эффективен и применим к данной транспортной сети.

перевозка транспорт маршрут

Заключение

В ходе данной курсовой работы были определены кратчайшие расстояния между пунктами транспортной сети с использованием компьютерной программы NAKRA. Были оптимизированы грузовые потоки при развозе 3-х видов грузов по 6 магазинам города Гомеля, а также были составлены маршруты перевозки этих грузов. Был выбран подвижной состав для осуществления данных перевозок.

Кроме того, были рассчитаны основные технико-эксплуатационные показатели работы подвижного состава и был произведен сравнительный анализ существующего и предлагаемого вариантов маршрутов перевозок грузов. В результате чего был выбран предлагаемый маршрут с движением в прямом направлении Б - М1 - М2 - М3 - М4 - М5 - М6- Б, транспортная работа которого составляет 106,095 т-км, а общий пробег автомобилей работающих на данном маршруте 38,1 км, так как он является наиболее выгодным и целесообразным для данного района города Гомеля.

Литература

1 Автомобильные перевозки пассажиров и грузов. Практикум: учебное пособие / С.А. Аземша, С.В. Скирковский, С.В. Сушко; М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. - Гомель: БелГУТ, 2012. - 205 с.

2 Требования по оформлению отчетных документов самостоятельной работы студентов: учебно-методическое пособие / М.А. Бойкачев [и др.]; М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. - Гомель: БелГУТ, 2008. - 62 с.

3 Ипользовали для решения задачи коммивояжера методом Литтла.

Приложение А

M (М1,Б) = М1 - Б ; L = 3500 м

M (М2,Б) = М2 - 7 - М1 - Б ; L = 8500 м

M (М3,Б) = М3 - 11 - М1 - 7 - М2 - 8 - 9 - 10 - Б ; L = 12400 м

M (М4,Б) = М4 - 33 - М1 - 29 - 30 - 31 - 32 - Б ; L = 7800 м

M (М5,Б) = М5 - 16 - М1 - 18 - 17 - М6 - Б ; L = 14200 м

M (М6,Б) = М6 - 18 - М1 - Б ; L = 10300 м

Таблица 1

из/в

Б

М1

М2

М3

М4

М5

М6

Б

----

3500

8500

12400

7800

14200

10300

М1

3500

----

5000

8900

4300

10700

6800

М2

8500

5000

----

3900

8800

15300

11800

М3

12400

8900

3900

----

5000

11500

14900

М4

7800

4300

8800

5000

----

6500

9900

М5

14200

10700

15300

11500

6500

----

3900

М6

10300

6800

11800

14900

9900

3900

----

Таблица 2

Начальный пункт

Конечный пункт

Б

М1

М2

М3

М4

М5

М6

Б

-

3500

8500

12400

7800

14200

10300

М1

3500

-

5000

8900

4300

10700

6800

М2

8500

5000

-

3900

8800

15300

11800

М3

12400

8900

3900

-

5000

11500

14900

М4

7800

4300

8800

5000

-

6500

9900

М5

14200

10700

15300

11500

6500

-

3900

М6

10300

6800

11800

14900

9900

3900

-

Приложение Б

В настоящее время в условиях значительного роста объема перевозок грузов в городах для обеспечения более рационального использования подвижного состава и сокращения транспортных затрат большое значение имеет определение кратчайших расстояний между пунктами транспортной сети.

Транспортная сеть представляет собой систему дорог, которые пригодны по качеству дорожного покрытия, ширине проезжей части и открыты для движения подвижного состава.

Транспортная сеть состоит из отдельных элементов, которые являются вершинами и звеньями сети. Каждой вершине присваивается свой порядковый номер или другое условное обозначение.

Получим матрицу стоимости для нашего графа, элементами которой являются веса соответствующих дуг. Все элементы по диагонали матрицы приравняем к бесконечности

Таблица 3

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 4

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 5

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,5=300, Г3,4=1800, Г4,3=1800, Г5,2=700, Г6,7=5100, Г7,6=5100,

В результате сравнения мы получили 2 одинаковых максимальных Г=5100. Это означает что алгоритм разветвляется и мы должны рассмотреть все получившиеся варианты поочередно. Рассмотрим вариант Г6,7=5100

Удалим из матрицы стоимости строку 6 и столбец 7, и присвоим элементу (7,6) значение бесконечности. Внесем в текущий ориентированный граф дугу (6,7)

Таблица 6

В строке 7 и столбце 6 отсутствует элемент равный ?. Присвоим элементу (7,6) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=27700

Нижняя граница равна сумме всех вычтенных элементов в строках и столбцах. Итоговое значение нижней границы должно совпасть с длиной результирующего контура.

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 7

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 8

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,5=300, Г3,4=1800, Г4,3=1800, Г5,2=0, Г5,6=5000, Г7,2=2300,

Максимальное значение имеет Г5,6=5000

Удалим из матрицы стоимости строку 5 и столбец 6. Внесем в текущий ориентированный граф дугу (5,6)

Таблица 9

1

2

3

4

5

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4100

4

8500

5000

0

?

300

7

3500

0

5000

8100

2300

В строке 7 и столбце 5 отсутствует элемент равный ?. Присвоим элементу (7,5) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=32800

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 10

1

2

3

4

5

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4100

4

8500

5000

0

?

300

7

3500

0

5000

8100

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 11

1

2

3

4

5

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4100

4

8500

5000

0

?

300

7

3500

0

5000

8100

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,5=300, Г3,4=6500, Г4,3=1800, Г7,2=3500,

Максимальное значение имеет Г3,4=6500

Удалим из матрицы стоимости строку 3 и столбец 4. Внесем в текущий ориентированный граф дугу (3,4)

Таблица 12

1

2

3

5

1

?

0

5000

3500

2

0

?

1500

0

4

8500

5000

0

300

7

3500

0

5000

?

В строке 4 и столбце 3 отсутствует элемент равный ?. Присвоим элементу (4,3) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=32800

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 13

1

2

3

5

1

?

0

5000

3500

2

0

?

1500

0

4

8200

4700

?

0

7

3500

0

5000

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 14

1

2

3

5

1

?

0

3500

3500

2

0

?

0

0

4

8200

4700

?

0

7

3500

0

3500

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,3=3500, Г2,5=0, Г4,5=4700, Г7,2=3500,

Максимальное значение имеет Г4,5=4700

Удалим из матрицы стоимости строку 4 и столбец 5. Внесем в текущий ориентированный граф дугу (4,5)

Таблица 15

1

2

3

1

?

0

3500

2

0

?

0

7

3500

0

3500

В строке 7 и столбце 3 отсутствует элемент равный ?. Присвоим элементу (7,3) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=34600

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 16

1

2

3

1

?

0

3500

2

0

?

0

7

3500

0

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 17

1

2

3

1

?

0

3500

2

0

?

0

7

3500

0

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,3=3500, Г7,2=3500,

В результате сравнения мы получили 4 одинаковых максимальных Г=3500. Это означает что алгоритм разветвляется и мы должны рассмотреть все получившиеся варианты поочередно. Рассмотрим вариант Г1,2=3500

Удалим из матрицы стоимости строку 1 и столбец 2, и присвоим элементу (2,1) значение бесконечности. Внесем в текущий ориентированный граф дугу (1,2)

Таблица 18

1

3

2

0

0

7

3500

?

В строке 2 и столбце 1 отсутствует элемент равный ?. Присвоим элементу (2,1) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=34600

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (6, 7), (5, 6), (3, 4), (4, 5), (1, 2), (2, 3), (7, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г7,2. Удалим из матрицы стоимости строку 2 и столбец 7. Внесем в текущий ориентированный граф дугу (7,2)

Таблица 19

1

3

1

?

3500

2

0

0

В строке 2 и столбце 3 отсутствует элемент равный ?. Присвоим элементу (2,3) значение бесконечности чтобы избежать преждевременного замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (6, 7), (5, 6), (3, 4), (4, 5), (7, 2), (1, 3), (2, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г2,3. Удалим из матрицы стоимости строку 3 и столбец 2. Внесем в текущий ориентированный граф дугу (2,3)

Таблица 20

1

2

1

?

0

7

3500

0

В строке 7 и столбце 2 отсутствует элемент равный ?. Присвоим элементу (7,2) значение бесконечности чтобы избежать преждевременного замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (6, 7), (5, 6), (3, 4), (4, 5), (2, 3), (1, 2), (7, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г2,1. Удалим из матрицы стоимости строку 1 и столбец 2. Внесем в текущий ориентированный граф дугу (2,1)

Таблица 21

2

3

1

0

3500

7

0

?

В строке 1 и столбце 2 отсутствует элемент равный ?. Присвоим элементу (1,2) значение бесконечности чтобы избежать преждевременного замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (6, 7), (5, 6), (3, 4), (4, 5), (2, 1), (1, 3), (7, 2)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г7,6. Удалим из матрицы стоимости строку 6 и столбец 7. Внесем в текущий ориентированный граф дугу (7,6)

Таблица 22

1

2

3

4

5

7

1

?

0

5000

8900

3500

6800

2

0

?

1500

5400

0

3300

3

4600

1100

?

0

4100

7900

4

8500

5000

0

?

300

11000

5

3500

0

4500

700

?

5600

6

10300

6800

11400

7600

1800

0

В строке 6 и столбце 7 отсутствует элемент равный ?. Присвоим элементу (6,7) значение бесконечности чтобы избежать преждевременного замыкания контура.

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 23

1

2

3

4

5

7

1

?

0

5000

8900

3500

6800

2

0

?

1500

5400

0

3300

3

4600

1100

?

0

4100

7900

4

8500

5000

0

?

300

11000

5

3500

0

4500

700

?

5600

6

8500

5000

9600

5800

0

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 24

1

2

3

4

5

7

1

?

0

5000

8900

3500

3500

2

0

?

1500

5400

0

0

3

4600

1100

?

0

4100

4600

4

8500

5000

0

?

300

7700

5

3500

0

4500

700

?

2300

6

8500

5000

9600

5800

0

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,5=0, Г2,7=2300, Г3,4=1800, Г4,3=1800, Г5,2=700, Г6,5=5000,

Максимальное значение имеет Г6,5=5000

Удалим из матрицы стоимости строку 6 и столбец 5. Внесем в текущий ориентированный граф дугу (6,5)

Таблица 25

1

2

3

4

7

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4600

4

8500

5000

0

?

7700

5

3500

0

4500

700

2300

В строке 5 и столбце 7 отсутствует элемент равный ?. Присвоим элементу (5,7) значение бесконечности чтобы избежать преждевременногог замыкания контура.

Текущая Нижняя граница=32800

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 26

1

2

3

4

7

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4600

4

8500

5000

0

?

7700

5

3500

0

4500

700

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 27

1

2

3

4

7

1

?

0

5000

8900

3500

2

0

?

1500

5400

0

3

4600

1100

?

0

4600

4

8500

5000

0

?

7700

5

3500

0

4500

700

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,7=3500, Г3,4=1800, Г4,3=6500, Г5,2=700,

Максимальное значение имеет Г4,3=6500

Удалим из матрицы стоимости строку 4 и столбец 3. Внесем в текущий ориентированный граф дугу (4,3)

Таблица 28

1

2

4

7

1

?

0

8900

3500

2

0

?

5400

0

3

4600

1100

0

4600

5

3500

0

700

?

В строке 3 и столбце 4 отсутствует элемент равный ?. Присвоим элементу (3,4) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=32800

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 29

1

2

4

7

1

?

0

8900

3500

2

0

?

5400

0

3

3500

0

?

3500

5

3500

0

700

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Таблица 30

1

2

4

7

1

?

0

8200

3500

2

0

?

4700

0

3

3500

0

?

3500

5

3500

0

0

?

Г1,2=3500, Г2,1=3500, Г2,7=3500, Г3,2=3500, Г5,2=0, Г5,4=4700,

Максимальное значение имеет Г5,4=4700

Удалим из матрицы стоимости строку 5 и столбец 4. Внесем в текущий ориентированный граф дугу (5,4)

Таблица 31

1

2

7

1

?

0

3500

2

0

?

0

3

3500

0

3500

В строке 3 и столбце 7 отсутствует элемент равный ?. Присвоим элементу (3,7) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=34600

Найдем минимальные элементы в каждой строке и затем вычтем его из остальных элементов строки (минимальные элементы записаны напротив соответствующих строк). Получим матрицу представленную ниже.

Таблица 32

1

2

7

?

0

3500

0

?

0

3500

0

?

То же проделаем и со столбцами, не содержащими нуля. Получим матрицу, содержащую нули в каждой строке и каждом столбце.

Таблица 33

1

2

7

1

?

0

3500

2

0

?

0

3

3500

0

?

Для каждого нулевого элемента рассчитаем значение Гij, равное сумме наименьшего элемента i строки (исключая элемент Сij=0) и наименьшего элемента j столбца.

Г1,2=3500, Г2,1=3500, Г2,7=3500, Г3,2=3500,

В результате сравнения мы получили 4 одинаковых максимальных Г=3500. Это означает что алгоритм разветвляется и мы должны рассмотреть все получившиеся варианты поочередно. Рассмотрим вариант Г1,2=3500

Удалим из матрицы стоимости строку 1 и столбец 2, и присвоим элементу (2,1) значение бесконечности. Внесем в текущий ориентированный граф дугу (1,2)

Таблица 34

1

7

2

0

0

3

3500

?

В строке 2 и столбце 1 отсутствует элемент равный ?. Присвоим элементу (2,1) значение бесконечности чтобы избежать преждевременного замыкания контура.

Текущая Нижняя граница=34600

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (7, 6), (6, 5), (4, 3), (5, 4), (1, 2), (2, 7), (3, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г3,2. Удалим из матрицы стоимости строку 2 и столбец 3. Внесем в текущий ориентированный граф дугу (3,2)

Таблица 35

1

7

1

?

3500

2

0

0

В строке 2 и столбце 7 отсутствует элемент равный ?. Присвоим элементу (2,7) значение бесконечности чтобы избежать преждевременного замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (7, 6), (6, 5), (4, 3), (5, 4), (3, 2), (1, 7), (2, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г2,7. Удалим из матрицы стоимости строку 7 и столбец 2. Внесем в текущий ориентированный граф дугу (2,7)

Таблица 36

1

2

1

?

0

3

3500

0

В строке 3 и столбце 2 отсутствует элемент равный ?. Присвоим элементу (3,2) значение бесконечности чтобы избежать преждевременного замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтенные элементы матрицы к нижней границе), и добавляем к маршруту коммивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (7, 6), (6, 5), (4, 3), (5, 4), (2, 7), (1, 2), (3, 1)

Вернемся к возникшему у нас ветвлению и рассмотрим случай при котором максимальное значение имеет Г2,1. Удалим из матрицы стоимости строку 1 и столбец 2. Внесем в текущий ориентированный граф дугу (2,1)

Таблица 37

2

7

1

0

3500

3

0

?

В строке 1 и столбце 2 отсутствует элемент равный ?. Присвоим элементу (1,2) значение бесконечности чтобы избежать преждевременногог замыкания контура.

После того, как ранг матрицы становится равным двум мы получаем нули в каждой ее строке и столбце (добавив как и ранее вычтеные элементы матрицы к нижней границе), и добавляем к маршруту комивояжера дуги которым соответствуют нулевые элементы.

НГр=38100

Маршрут коммивояжера включает в себя дуги:, (7, 6), (6, 5), (4, 3), (5, 4), (2, 1), (1, 7), (3, 2)

Мы рассмотрели все возможные ветви алгоритма, теперь необходимо выбрать из полученых в результате рассмотрения каждой ветви значений нижней границы - минимальное. Это и будет оптимальной длиной пути коммивояжера

Минимальное значение имеет НГр=38100

Соответствующий оптимальный контур включет дуги:, (6, 7), (5, 6), (3, 4), (4, 5), (1, 2), (2, 3), (7, 1)

Размещено на Allbest.ru


Подобные документы

  • Анализ транспортной сети и обьема перевозок. Определение кратчайших расстояний между пунктами транспортной сети, минимизация груженных и холостых пробегов. Составление кольцевых маршрутов и подвижного состава; расчет его количества и показателей работы.

    курсовая работа [1,3 M], добавлен 14.03.2014

  • Маршрутизация автомобильных и железнодорожных перевозок. Методика определения кратчайших расстояний между пунктами транспортной сети с использованием метода потенциалов. Проблемы при построении маршрутов перевозок и автоматизация транспортной логистики.

    курсовая работа [183,4 K], добавлен 01.10.2015

  • Составление модели транспортной сети и разработка исходного варианта. Улучшение исходного варианта сети и определение кратчайших расстояний. Определение маршрутов и показателей транспортной работы. Составление первоначального базисного распределения.

    курсовая работа [433,8 K], добавлен 16.05.2015

  • Методика расчета технико-эксплуатационных показателей работы подвижного состава. Определение производственной программы по перевозкам для транспортной сети, количества водителей для выполнения данного объема перевозок, ТЭП работы подвижного состава.

    контрольная работа [86,6 K], добавлен 25.12.2011

  • Выбор автотранспортных средств для перевозки грузов подвижным составом. Определение кратчайших расстояний между пунктами транспортной сети. Разработка плана рациональных маршрутов перевозки, расчет времени на выполнение погрузочно-разгрузочных работ.

    курсовая работа [782,4 K], добавлен 25.12.2011

  • Выбор подвижного состава для перевозки груза. Определение кратчайших расстояний между пунктами транспортной сети. Разработка плана рациональных маршрутов. Расчет времени на выполнение погрузочно-разгрузочных работ. Маршрутная карта перевозок грузов.

    курсовая работа [907,3 K], добавлен 09.04.2011

  • Определение кратчайших расстояний между пунктами транспортной сети, проверка исходной маршрутной схемы на возможность. Расчет необходимого числа автобусов, рациональной организации их работы и составление сводного маршрутного расписания движения.

    курсовая работа [361,3 K], добавлен 18.04.2011

  • Расчет технико-эксплуатационных и экономических показателей работы подвижного состава на маршрутах. Определение себестоимости перевозок и плату за перевозку грузов. Путевая документация на перевозку груза. Составление калькуляции автомобильных перевозок.

    курсовая работа [220,0 K], добавлен 14.06.2010

  • Порядок определения кратчайших расстояний между пунктами транспортной сети, составление специальной матрицы. Построение плана перевозок щебня, который обеспечивал бы минимальное значение грузооборота. Маршруты движения автомобилей без холостого хода.

    практическая работа [75,7 K], добавлен 08.02.2012

  • Сущность и методы организации перевозок пассажиров городским транспортом. Особенности моделирования транспортной сети города. Теоретические основы расчета параметров транспортных систем и перспективного плана работы пассажирской транспортной сети города.

    курсовая работа [81,5 K], добавлен 04.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.