Технологический процесс послеуборочной обработки зерна в ОАО "Агрофирма им. В.М. Зайцева"

Производство зерна в условиях Карелии. Производственно-техническая характеристика ОАО "Агрофирма им. В.М. Зайцева". Характеристика землепользования. Технология возделывания овса, послеуборочная обработка зерна. Технологический расчёт зерносушилки.

Рубрика Сельское, лесное хозяйство и землепользование
Вид дипломная работа
Язык русский
Дата добавления 22.04.2010
Размер файла 895,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По ш и р и н е семена делят на решётах с круглыми отверстиями, Сквозь круглое отверстие зерно может пройти только в том случае, если его ширина меньше диаметра отверстия. Длина и толщина зерна не препятствуют его проходу сквозь круглое отверстие.

По д л и н е семена делят в дисковых или цилиндрических триерах. Цилиндрический триер - это вращающийся стальной цилиндр с ячейками на внутренней поверхности и желобом, установленным внутри цилиндра по всей его длине. В желобе вращается шнек. Зерновой ворох подают на внутреннюю поверхность цилиндра. Частицы начинают скользить по поверхности цилиндра и взаимодействуют с ячейками. Мелкие и короткие семена полностью погружаются в ячейки, длинные - частично. При повороте цилиндра на небольшой угол (менее 90°) из ячеек выпадают длинные зерна, а при дальнейшем повороте цилиндра - короткие зерна, которые падают в желоб.

Принцип разделения зёрен по длине заключается в том, что длинные зёрна при повороте цилиндра выпадают из ячеек раньше, чем короткие.

Для одновременного выделения из зернового вороха длинных и коротких примесей применяют два цилиндра. Триер для выделения коротких примесей (кукольный) снабжен мелкими ячейками, для выделения длинных примесей (овсюжный) - крупными. В ячейки овсюжного триера западают семена основной культуры, в ячейки кукольного - короткие примеси.

При вращении кукольного цилиндра мелкие примеси поднимаются выше края неподвижного желоба и выпадают из ячеек в жёлоб, из которого удаляются шнеком. Семена основной культуры перемещаются по дну цилиндра к выходу. Овсюжный цилиндр забрасывает семена основной культуры в жёлоб, а длинные примеси сходят по дну цилиндра. Чтобы отрегулировать полноту выделения примесей, поворачивают жёлоб, устанавливая его верхнюю кромку выше или ниже.

Частота вращения триерного цилиндра должна быть такой, чтобы все зёрна выпадали из ячеек. Если частота вращения цилиндра выше критической, то центробежная сила удержит часть семян в ячейках и точность разделения зерна на фракции снизится. Обычно частота вращения триерного цилиндра находится в пределах 35...50 мин -1.

Триерные цилиндры устанавливают в сложных зерноочистительных машинах, зерноочистительных агрегатах и комплексах. Промышленность выпускает триерные цилиндры с ячейками диаметром 6,3; 8,5 и 11,2 мм для сортирования зерновых культур и диаметром 1,8; 2,8 и 3,5 мм для выделения мелких семян.

Разделение семян по аэродинамическим свойствам. Перемещаясь в воздушной среде, любое тело преодолевает сопротивление воздуха, зависящее от его размеров, формы, массы и расположения в воздушном потоке. Чем больше сопротивление воздуха, тем медленнее движется свободно падающее тело. На этом принципе основан процесс выделения примесей и разделения зерна горизонтальным или вертикальным воздушным потоком. Обычно разделяемую смесь вводят в воздушный поток, создаваемый вентилятором, или подбрасывают, заставляя двигаться в воздухе.

Смесь зерна можно разделить воздушным потоком только в том случае, если критические скорости семян и примесей различны. Критическая скорость семян зерновых культур 8...17 м/с (пшеницы 8...11,5 м/с, овса 8,1...9,1 м/с, гороха 15,5 м/с). Критическая скорость одного и того же тела неправильной формы - непостоянная величина, так как зависят от площади поверхности тела, на которую действует поток воздуха. Площадь же поверхности тела зависит от его расположения относительно направления воздушного потока. Например, площадь поверхности зерна пшеницы будет наименьшей, если его продольная ось совпадает с направлением потока воздуха, и наибольшей, если продольная ось зерна перпендикулярна направлению потока.

Тела разделяют по аэродинамическим свойствам с помощью пневмосепараторов или аспирационных систем, встроенных в зерноочистительные машины. Пневмосепараторы применяют для предварительной очистки зерна, поступающего от комбайна. Воздушным потоком выделяют из зерна кусочки соломы, полову, пыль и семена некоторых сорных растений. Пневмосепараторы используют также для очистки плодов машинного сбора от примесей. Существует большое разнообразие схем и конструкций пневмосепараторов. По принципу действия их можно разделить на три типа: пневмогравитационные, пневмоимпульсные и пневмоцентро-бежные.

Пневмогравитационные сепараторы с наклонным или вертикальным воздушным потоком состоят из вентилятора, воздушного канала, загрузочного устройства, осадочной камеры и приёмника для сбора зерна. В этих сепараторах зерновой ворох подается в воздушныи канал самотёком или перемещается поперёк канала колеблющимся решетом. Под воздействием воздушного потока расщепляются траектории движения частиц зерновой смеси : тяжелое зерно сохраняет первоначальное направление движения и сходит в приемники и, а лёгкие примеси отклоняются от направления ввода и уносятся воздушным потоком.

В пневмогравитационных сепараторах на частицу вороха действуют две силы: сила тяжести Q и аэродинамическая сила R.. Направление аэродинамической силы может меняться в зависимости от направления движения воздушного потока. В таких сепараторах скорость ввода материала в камеру сепарации нe превышает 1...2 м/с. Поэтому скорость воздушного потока vв должна быть меньше критической скорости зерна vкp, т.е. л = vв/vкp ? 1. В зависимости от обрабатываемой культуры скорость воздушного потока в канале изменяют, регулируя частоту вращения вентилятора, также перекрывая заслонкой канал или окна вентилятора.

В пневмоимпульсных сепараторах ворох выбрасывается в камеру сепарации ленточным, или роторным метателем. На частицу вороха также действуют сила тяжести и аэродинамическая сила. Скорость ввода ма териала в камеру сепарации может быть сколь угодно большая, а следовательно, частица будет иметь запас кинетической энергии для преодоления сопротивления воздуха. В таких сепараторах значение л может быть больше 1. Увеличивая скорость воздуха и скорость вбрасывания, можно интенсифицировать рабочий процесс. Однако при этом возрастают размеры камеры сепарации.

В пневмоцентробежных сепараторах ворох раскручивается в камере разгона и подается в делительную камеру или. Воздушный поток, всасываемый вентиляторами, взаимодействует с частицами, совершающими вращательное движение по поверхности делительной камеры. Воздух уносит лёгкие примеси к вентилятору и далее в осадочную камеру, а зерно сходит к горловине и поступает в бункер. В пневмосепараторе ворох раскручивается винтовыми желобами, а поток воздуха направлен вниз к горловине воздухопровода - приемника. В пневмосепараторе ворох раскручивает лопастной ротор-распределитель, а поток воздуха направлен вверх.

В том и другом варианте воздух обдувает рабочую перфорированную поверхность с кольцевыми каналами для его прохода. В данных сепараторах на частицы вороха действуют сила тяжести, аэродинамйческая и центробежная силы. Придавая частицам вороха вращательное движение с любой угловой скоростью, можно увеличивать скорость воздушного потока до значений, при которых л будет значительно больше 1. Камера сепарации имеет кольцеобразную форму. Поэтому габаритные размеры пневмоцентробежных сепараторов могут быть значительно меньше, чем пневмоимпульсных при одинаковой их пропускной способности.

Разделение семян по плотности в жидкостных сепараторах или нa пневматических сортировальных столах обеспечивает выделение из зернового вороха наиболее жизнеспособных семян (сортирование по плотности) или очистку зерна от трудноотделимых примесей (например, дикой редьки от семян ячменя, гречихи и др.). В жидкостных сепараторах используют жидкость заданной плотности, в которой тяжёлые семена тонут, а лёгкие всплывают. На пневматических столах на слой зерна воздействуют одновременно колебаниями и воздушным потоком. При этом слой зерна на столах «псевдоожижается», т. е. приобретает свойства жидкости: тяжёлые частицы опускаются, а лёгкие всплывают.

Разделение семян по состоянию поверхности и форме. Семена разных культур имеют различные поверхности (гладкую, шероховатую, пористую, бугристуго, покрыты плёнками, пушком) и форму (длинные, шарообразные, трёхгранные). Коэффициент трения при движении таких семян по наклонной поверхности также различен. С учётом этого для разделения семян созданы устройства, имеющие наклонные фрикционные поверхности: горки, винтовые сепараторы, фрикционные триеры.

Обычно в качестве фрикционной поверхности применяют наклонное шероховатое полотно, движущееся равномерно вверх. Если на это полотно подавать зерновую смесь, частицы с малым коэффициентом трения, слабо сцепляющиеся с полотном, скатятся вниз. Частицы, сильнее сцепляющиеся с полотном, уносятся вверх. Таким способом можно выделить овсюг из овса, отделить клубочки семян сахарной свеклы от клубочков со стебельками, очистить семена льна и клевера.

Используют также способность шероховатых семян удерживать порошок тонкого помола. Для этого семена смешивают с порошком, содержащим железо, и пропускают смесь через электромагнитную очистительную машину, магнитный барабан которой притягивает порошок и вместе с ним шероховатые семена. Длинные и круглые семена можно отделить одни от других, используя устройство с винтовой поверхностью (змейка). Семена высыпают небольшой равномерной струей на верхнюю часть винтовой поверхности. Длинные зерна (например, овёс) из-за значительного сопротивления скользят по винтовой поверхности и сходят с нижнего витка в лоток. Круглые зерна (вика, куколь) движутся быстрее, скатываются к наружному краю винтовой поверхности и падают за её пределы. Семена сорняков трехгранной формы выделяют на решете с треугольными отверстиями.

Разделение семян по упругости происходит на отражательных столах, на которые сбрасывают семена. После удара семена с различными упругими свойствами по-разному отражаются от поверхности стола и движутся по разным траекториям.

Разделение семян по цвету происходит на установках, снабженных фотоэлементами. Семена движутся мимо фотоэлементов дискретным потоком. Светлые зерна возбуждают в фотоэлементе электрический ток, вырабатывается сигнал и открывается клапан нa пути этих семян в бункер. Темные семена клапан направляет в другой канал.

По электропроводности, диэлектрической проницаемости и другим электрическим свойствам семена разделяют в электрическом поле. При этом могут быть использованы электрический, коронный и диэлектрический методы разделения.

Типы зерноочистительных машин. Для очистки и сортирования зерна применяют безрешетные, воздушно-решетные, комбинированные и специальные машины

Зерноочистительные машины подразделяются нa машины общего назначения, предназначенные для очистки зерна и семян зерновых, технических и бобовых культур и трав, и специального назначения (электромагнитные машины, горки, пневматические сортировальные столы и др.), по способу очистки - нa воздушные, воздушно-решётные, триерные, воздушно-решётно-триерные.

По назначению различают машины предварительной, первичной и вторичной очистки. Машины первой группы используют для очистки зерна, поступившего от комбайна перед сушкой или закладкой на хранение, машины первичной очистки -для обработки зерна после сушки, вторичной - для окончательного очищения и сортирования семенного зерна. Выпускаются передвижные и стационарные зерноочистительные машины: первые применяют нa открытых токах и складах, вторые - в поточных линиях агрегатов и комплексов.

2.3 Зерноочистительные агрегаты и комплексы

Высококачественная послеуборочная обработка зерна различного назначения с наименьшими затратами труда и средств обеспечивается при использовании поточых технологий, которые реализуются на зерно-очистительных агрегатах типа ЗАВ и зерноочистительно-сушильных комплексах типа КЗС.

Машины и оборудование в агрегатах и комплексах увязаны между собой по производительности, управляют ими дистанционно с пультов управления. Зерноочистительно-сушильные комплексы типа КЗС в отличие от зерноочистительных агрегатов дополиительно ильзуют сушильное отделение с шахтными или барабанными сушилками (в обозначении марки комплекса добавляется соответсгвенно буква Ш или Б: КЗС-25Ш, КЗС-25Б).

Для обработки зерна семенного назначения предпочтительнее использовать комплексы с шахтными сушилками, которые обеспечивают более строгое регулирование режима сушки и надёжнее сохраняют качество семян.

Эксплуатируемые агретаты и комплексы имеют ряд недостатков, затрудняющих их эффективное использование. В ОАО ГСКБ «Зерноочистка» (г. Воронеж) созданы усовершенствованные аrрегаты ЗАВ-20У и ЗАВ-40У, у которых по сравнению с ЗАВ-20 и ЗАВ-40 повышена производительность, предусмотрена разгрузка всех видов транспорта, увеличена вместимость приёмного бункера.

Для гарантированной очистки семян первого класса зерноочистительные агрегаты могут укомплектовываться семяочистительными приставками. Предусматривается привязка сушилок. Проектируются зерноочистительные агрегаты производительностью 50 и 100 т/ч.

Одно из направлений комплексной механизации послеуборочной обработки зерна и подготовки семян - внедрение в сельскохозяйственное производство зерносемяочистительных блок-модулей, что обусловлено необходимостъю снижения капитальных вложений, сокращения до минимума сроков монтажа и строительства. При этом появляется возможность использовать в большом количестве поступающие склады, крьггые токи, навесы и т.д. В ОАО ГСКБ "Зерноочистка" разработана основная номенклатура таких модулей.

Таблица 2.1. -Техническая характеристика зерно-семяочистительных блок-модулей и семяочистительных приставок к агрегатам ЗАВ

Марка

Производитель-носгь, т/ч

Установленная мощность, кВт

Габаритные размеры, м

Масса, кг

Семяочистительные приставки:

СП-10Б

До 15

48

5х6,6х10,8

13730

СП-10В

До 15

32

4,2х6,6х10,8

9520

Блок-модули:

семяочистительные:

EMC-2,5

2,5

26

9х5х до 6

6700

БМС-5

5

42,2

9х5х до 6

7500

EMC-10

10

53,2

9х5х до 6

9815

продовольственно-фуражные:

БМФ-25

25

18,4

5х3,6х до 10

4600

БМФ-50

50

36;8

10х3,6х до 10

9000

БМП-5

5

11,8

бх5х6

4012

БМП-10

10

18,5

9х5х8

7120

БМП-20

20

23

9х5х8

10125

Проблему механизации послеуборочной обработки зерна и подготовки семян можно решитъ при реконструкции имеющихся в хозяйствах агрегатов ЗАВ и комплексов КЗС. ОАО ГСКБ «Зерноочистка» предлагает комплект машин и оборудования для реконструкции зерноочистительных агрегатов ЗАВ-20 и ЗАВ-40, что позволяет довести их производительность соответственно до 25 и 50 т/ч, улучшить качество подготовки зерна.

Завод «Воронежсельмаш» (г. Воронеж) и фирма «Petkus Wuhta» (Германия) проводят реконструкцию агрегатов ЗАВ-20, ЗАВ-25, ЗАВ-40 и комплексов КЗС-20, КЗС-25 и КЗС-40, заменяя машины ЗАВ-10.30.000, ЗВС-20 и ЗАВ-10.90.000 машинами фирмы: зерноочистительной К527А, семяочисти-тельной К547А и триерным блоком К236А.

2.3.1.Зерноочистительный агрегат ЗАВ-40

Зерноочистительный агрегат ЗАВ-40 предназначен для очистки и сортирования продовольственного и семенного зерна: пшеницы, ржи, ячменя, овса, кукурузы, риса-сырца, гороха, проса, гречихи и подсолнечника. Обрабатываемый материал при очистке на продовольственные цели доводят до базисных кондиций, при очистке семенного зерна - по чистоте и содержанию сорняков до норм ГОСТа на семена, кроме материала, для очистки которого требуются специальные машины ( пневмосортировальные столы, семяочистительные воздушно-решётные машины).

В агрегат входят: автомобилеподъёмник ГУАР-15Н (П), две воздушно-решетные зерноочистительные машины ЗВС-20, два центробежно-пневматических сепаратора ЗАВ-40.02000, два триерных блока ЗАВ-10.90000, две нории 2НПЗ-20, два шнека отходов, зернопроводы, шнек промежуточный, блок бункеров с опорами и арматурой перекрытия, пульт управления с системой дистанционного автоматического контроля уровня материала в секциях блока бункеров.

Машины и оборудование смонтированы на блоке бункеров, которые одновременно служат ёмкостью для промежуточного хранения зерна.

Оборудование и транспортирующие устройства агрегата расположены двумя технологическими линиями, что позволяет одновременно обрабатывать зерно в двух независимых потоках без смешивания материала.

Для очистки и сортирования семенного материала, содержащего трудноотделимые примеси, в блоке с агрегатом можно использовать семяочистительную приставку СП-10.

Агрегат монтируют в укрытии, собираемом из металлических конструкций, входящих в комплект, согласно типовому проекту № 812-22.

Обслуживает механик. Рекомендуется для зон: 4…7, 13…17, 19.

Техническая характеристика

Производительность в час чистой работы на очистке

пшеницы влажностью до 20% и засорённостью до 16%, т:

продовольственной ……………………………………………………….40

семенной …………………………………………………………………..15

Число электродвигателей ………………………………………………14

Мощность электродвигателей, кВт: …………………………………44,3

Максимальное заглубление приямков, м: ………………………………..2

Вместимость, м3

завальной ямы ……………………………………………………………25

бункера резерва …………………………………………………………..31

бункера очищенного зерна ………………………………………..32,8 х 2

секции отходов ……………………………………………………….32,8

Габаритные размеры основного сооружения, мм ….13600 х 8400 х 10400

Масса комплекта машин и оборудования, кг: ……………………22320

2.4 Способы сушки

Сушкой называют процесс, направленный на уменьшение влажности тел. Сушка сельскохозяйственных продуктов имеет большое народно-хозяйетвенное значение. Она важное звено в цепи мероприятий, предназначенных для сохранения и улучшения качества зерна.

Задача сушки нe ограничиаается удалением влаги. Это одновременно и технологический процесс, при котором меняются свойства материалов (структурно-механические, технологические и биологические). Так, при переработке на мельницах сухого зерна увеличивается выход муки и уменьшается расход энергии на её получение. Такая мука лучше сохраняется. Сушка семенного зерна повышает всхожесть семян.

Уменьшение массы сельскохозяйственных продуктов в результате их сушки приводит к уменьшению транспортных расходов.

В сельском хозяйстве распространены тепловые сушильные установки. В процессе сушки протекают сложные тепломассообменные процессы. Решение задачи об оптимальных условиях сушки материалов требует учета комплекса факторов, а именно: семенных, биологических, технологических, энергетических и др. Знание тепломассообменных явлений, протекающих в процессе сушки, позволяет осуществить её оптимальный режим.

Большое разнообразие способов сушки, применяемых нa практике, основано нa двух принципах: удаление влаги из материала без изменения или с изменением его агрегатного состояния.

Ha первом принципе сушки (обезвоживания) основаны механические и сорб-ционный способы.

К механическому способу относят фильтрацию, прессование и цен-трифугирование. Этот способ находит применение, например, при выделении соков из плодов и ягод фильтр-прессованием.

При сорбционном способе влажный материал находится в непосредственном контакте с гигроскопическими веществами (хлористый кальций и др.). Сорбционный метод используют для сушки материалов, к которым нe применимы термические способы (семена фасоли, сои и др.).

Второй принцип сушки основан нa использовании теплоты для испарения и удаления влаги из материала, поэтому его называют тепловой сушкой.

В зависимости от способа подвода теплоты к объекту сушки различают конвективный, кондуктивный (контактный), радиационный, сублимационный и электрический способы.

Пpи конвективном способе теплота передается материалу путем конвекции от агента сушки (нагретый воздух или смесь нагретого воздуха с топочными газами). При этом влажные тела подвергаются воздействию теплоты и пара, находящихся в агенте сушки, т. е. имеет место гигро-термическая обра6отка влажного материала. В сельскохозяйственном производстве этот способ нашёл наибольшее распространение.

Кондуктивным называют способ сушки, при котором теплота, необходимая для нагрева влажного материала и испарения жидкости, передается теплопроводностью при непасредственном контакте от нагретой поверхности к телу, подвергаемому сушке. Этот способ ранее применялся в подовых сyшилках, где зерно сушилось на горячей кирпичной поверхности (поде). Зерно при этом периодически перемешивали вручную.

Контактный способ сушки используют нa крупозаводах в паровых сушилках. В этом случае зерно, движущееся в сушилке, соприкасается с горячей поверхностью труб, внутри которых циркулирует пар. Паровые сушилки используют для сушкн фруктов и овощей.

Радиационный способ сушки может быть естественным (солнечными лучами) и искусственным (инфракрасньrми лучами}. Солнечная сушка имеет ограниченное применение. Для сушки в этих условиях используют площадку из расчета 10...13 м2 нa 1 т зерна. Зерно размещают слоем в 10...15 см и периодически перемешивают (перелопачивают). В солнечную погоду в течение дня влажность зерна уменьшается на 3...4%. Для сушки инфракрасными лучами генераторами излучения служат специальные электрические лампы, керамические плиты и металлические панели, нагреваемые электрическим током или газом. Они характеризуются высоким тепловым напряженнем. Температура на поверхности излучения достигает 1000...1200 K. В связи с этим во избежание перегрева материала используют прерывистое облучение (импульсная сушка).

Сублимационный способ сушки (молекулярная сушка) применяют в тех случаях, когда необходимо сохранить первоначальные свойства материала. Этот способ применяется для сушки фруктов, мяса, различных биологических препаратов, при глубоком вакууме (1...10 Па), причём механизм переноса теплоты и вещества (пара) становится иным. Вследствие интенсивного испарения большая часть влаги переходит в лед. При подводе к телу теплоты твердая фаза (лед), минуя жидкую, переходит в пар. Удаление влаги происходит путем превращения льда в пар и частично путем испарения переохлажденной жидкости. При этом полностью сохраняется молекулярная структура материала.

Электрический способ или сушка в электрическом поле токов высокой частоты (ТВЧ) заключается в том, что нагрев влажных материалов ТВЧ осуществляется за счёт превращения электрической энергии в теплоту. Поля температуры и влагосодержания непосредственно влияют на электрическое поле внутри материала, которое и обусловливает нагрев влажного тела.

Температура зерна, подверженного действию ТВЧ, повышается быстро, и тем самым может быть сокращена длительность сушки. Однако расход энергии при высокочастотной сушке велик (более 3 кВт ч на 1 кг испарённой влаги), поэтому этот сnособ нe получил практического применения при сушке сельскохозяйственных продуктов.

Комбинированные способы сушки наиболее эффективны: конвек-тивный совместно с кондуктивным, высокочастотным или радиационным; высокочастотный в сочетании с радиационным; сублимационный с радиационным и др.

2.4.1 Классификация и принципиальные схемы зерносушилок конвективного действия

Конвективный способ получил наибольшее применение в сельскохозяйственном производстве.

По конструкции сушильной камеры зерносушилки различают на шахт-ные, барабанные, камерные, пневмотрубные и конвейерные зерносушилки. При этом они могут быть одно- и двухшахтные, одно- и двухбарабанные. Камерные сушилки состоят из нескольких, иногда до десяти и более параллельно работающих камер.

Основные схемы конвективных сушилок приведены на рис .2.5.

Сушилки лоткового типа бывают стационарные или передвижные. Последние могут использоваться для сушки зерна непосредственно в поле у комбайна.

Основной конструктивный элемент сушилок лоткового типа - один или несколько лотков с дном из перфорированного листа. Сушилка оборудована топкой для получения горячих газов и вентилятором.

В камерной сушилке зерно засыпают в пространство между двумя перфорированными цилиндрами. Направление нагнетаемого горячего сушильного агента показана нa рис. 2.5. б стрелками.

Jlенточную (конвейерную) сушилку используют для сушки зерна, овощей, плодов и др. Материал располагают нa перфорированной стальной ленте или сетке, которая приводится в движение периодически или непрерывно. Сушильный агент поступает снизу.

Шахтные сушилки используют для сушки зерна. Шахты бывают жалюзийные, колонковые и с коробами. Зерно движется сверху вниз под действием собственного веса.

Сушильный агент поступает в поперечном направлении. Короба, подводящие теплоноситель, обозначены знаком (+), отводящие - знаком (-).

Просушенное зерно проходит камеру охлаждения и поступает в бункер.

Снижение влажности за один цикл сушки составляет 6... 12%; температура теплоносителя 70... 150 °С; расход теплоты - от 5030 до 5870 кДж на 1 кг испаренной влаги.

В барабанной зерносушилке основной конструктивный элемент - наклонный медленно вращающийся барабан (4...9 мин-1), в котором имеются лопасти, захватывающие и пересыпающие просушиваемый материал, пронизываемый теплоносителем. Основные характеристики барабанных зерносушилок следующие: снижение влажности за один цикл сушки 5...8%, расход теплоты в среднем 6280 кДж на 1 кг испарённой влаги, температура теплоносителя 150 ... 250 °С. Сушилки используют также для сушки семян трав, зеленой массы клевера и люцерны.

В вибрационных сушилках перфорированные лотки, расположенные в несколько рядов один над другим, приводятся в колебательное движение. Теплоноситель, подаваемый снизу, пронизывает слои зерна.

При сушке зерна в «кипящем» слое скорость теплоносителя должна быть 1...2 м/с. В этом случае вес отдельных зepeн уравновешивается подъёмной силой потока воздуха и слой зерна переходит в псевдосжиженное состояние, напоминающее кипящую жидкость. В так называемом кипящем слое происходит перемешивание зёрен и тем самым создаются хорошие условия для тепломассообмена в процессе сушки.

В пневматических сушилках зерно движется в потоке теплоносителя в трубе-сушилке. Продолжительность сушки за один проход невелика (при высоте трубы в 14 м продолжительность 5....6 с), поэтому снижение влажности незначительно. Для обеспечения требуемого снижения влажности мелкодисперсного материала процесс должен быть неоднократно повторен.

Пневмогазовые сушилки оборудованы пневмотическими трубами с рециркуляцией зерна, что позволяет увеличить длительность процесса сушки. После кратковременного (2...5 с) нагрева в трубе-сушилке зерно поступает в охладительную камеру, состоящую из зон промежуточного (на схеме справа) и окончательного охлаждения (слева). Сушка зерна обеспечивается после многократного повторения циклов нагрева и охлаждения с рециркуляцией (из зоны промежуточного охлаждения зерно возвращается в сушильную трубу). Температура теплоносителя в трубе 230...280°С, расход теплоты 6500 кДж на 1 кг испаренной влаги.

Лотковые, камерные и конвейерные сушилки - установки периодического действия. Они просты пo устройству и в эксплуатации, но малопроизводительны и неэкономичны.

Шахтные, барабанные и вибрационные сушилки - установки с подвижным слоем зерна. В этих установках скорость движения теплоносителя меньше скорости движения материала, подлежащего сушке.

В сушилках с «кипящим» слоем скорость движения теплоносителя меньше или равна скорости движения зерна, а в установках с сушкой зерна во взвешенном состоянии она намного выше и изменяется (в зависимости от размеров частиц) от 10 до 30 т/с.

По принципу работы сушилки делят на периодического и непрерывного действия. В первом случае зерно загружают в рабочую камеру, высушивают без перемещения зерна и по достижении -требуемйг влажности выгружают. Они бывают с продольным расположением (коридорного типа) и с поnеречным расположением камер (секционно-блочного типа). Во втором случае зерно непрерывно перемещается от места загрузки к месту его выпуска.

По конструктивному исполнению различают стационарные и передвижные сушилки.

По технологической схеме зерносушилки могут быть прямоточные и рециркуляционные. В первых сушилках зерно проходит через сушильную камеру один раз. Во вторых имеется устройство для возврата части просушенного зерна и смешивания его со свежим зерном, поступающим на сушку.

К конвективным способам сушки относится и активное вентилирование, заключающееся в продувании атмосферным воздухом объекта сушки.

Интенсифицировать процесс сушки можно путём подогрева наружного воздуха на 10...12°С, однако его температура не должна превышать 30…35оС, так как это приводит пересушиванию нижних слоёв или увеличению удельной подачи воздуха. Для подогрева воздуха целесообразно использовать солнечную энергию.

2.5 Технология сушки

При наличии продукции, зерносушилки должны работать круглосуточно. Так, рабочее время для стационарных зерносушилок в течение одного месяца должно составить 615 ч, nередвижных - 540 ч. Остальное время выделяется на очистку, планово-предупредительный ремонт и т. п.

В первую очередь следует сушить партии с наибольшей влажностью, а также зараженные вредителями хлебных и других запасов. Точно также следует отдать предпочтение сушке культур менее стойких в хранении. Необходимо постоянно наблюдать за температурой агента сушки, не допуская её отклонения от нормативных значений более чем нa 5°С для шахтных и нa 10°С для рециркуляционных сушилок.

Пшеницу влажностью более 20% и ячмень пивоваренный влажностью более 19% в прямоточных сушилках сушат в два пропуска, а в рециркуляционных - за один. При сушке в шахтных зерносушилках снижение влажности риса и сои за один пропуск нe должно превышать 3%, проса и гречихи-2 ... 3%, гороха и ячменя 3,5...4% кукурузы 4,5...5,5% и при сушке других культур 6%. При сушке риса в рециркуляционных сушилках снижение влажности за один пропуск должно быть не более 10%.

Для семенного зерна пшеницы, ржи, ячменя, овса, подсолнечника, гречихи и проса влажностью до 19% при сушке в шахтных прямоточных зерносушилках температура агента сушки допускается до 700С, а максимальный нагрев семян до 400С. Если в сушку поступают семена влажностью 19%, следует обеспечить их ступенчатую сушку. При сушке семян гороха, чечевицы, фасоли, люпина и риса предельные температуры должны быть снижены: агента сушки до 600C, зерна до 350С. При выборе режимов сушки гречихи и проса следует также учитывать их назначение. Так, применение высоких температур агента сушки для гречихи улучшает ее пищевые качества - крупа быстрее варится.

Ha выходе из охладительной камеры температура просушенных семян (продовольственных) нe должна превышать температуру окружающего воздуха более чем на 8 ... 100С.

2.5.1 Зерноочистительно-сушильный комплекс КЗС-20Ш

Зерноочистительно-сушильный комплекс КЗС-20Ш (рис.2.6.) предназначен для очистки, сушки и сортирования продовольственного и семенного зерна: пшеницы,ржи, ячменя, овса, кукурузы, гороха, проса,.гречихи и подсолнечника с доведением продовольственного материала до базисных кондиций, семенного - до норм I-II класса ГОСТа на семена, кроме материала, для очистки которого требуются специальные машины (пневмосорти-ровальные столы, воздушно-решетные семеочистительные машины).

В комплекс входят: автомобилепогрузчик ГУАР-15Н(П) или ГАП-2Ц, машина предварительной очистки ЗД-10.000, две воздушно-решетные зерноочистительные машины ЗАВ-10.30000, два триерных блока 3AB-10.90000, шахтная зерносушилка СЗШ-16, шесть норий, зернопроводы, скребковые транспортеры, централизованная воздушная система с пневмотранс-портёром, блок бункеров с опорами и арматурой перекрытия, металлическая арматура укрытия сушильного агрегата, пульт управления очистительного агрегата с системой дистанционного контроля уровня материала в секциях блока бункеров, станция управления сушильного агрегата и электродвигатели.

Для очистки и сортирования семенного материала, содержащего трудноот-делимые примеси, в блоке с комплексом сооружают семеочис-тительную приставку СП-10, в которую зерно самотеком поступает из бункера чистого зерна.

Оборудование зерноочистительного агрегата смонтировано на бункерах с опорами. Металлическая арматура служит для перекрытия и является каркасом здания. Оборудование сушильного агрегата установлено в здании, монтируемом из металлического каркаса, опор, сборных ферм и перекрытия, входящих в комплект оборудования комплекса. Комплекс сооружается по типовому проекту № 812-56.

Обслуживают механик и рабочий.

2.5.2 Зерноочистительно-сушильный комплекс КЗС-20Б

Зерноочистительно-сушильный комплекс КЗС-20Б предназначен для очистки, сушки и сортирования продовольственного и семенного зерна: пшеницы, ржи, ячменя, овса, кукурузы. Обрабатываемый материал при очистке и сушке на продовольственные цели доводят до базисных кондиций, при очистке и сушке семенного зерна по влажности, чистоте и содержанию сорняков - до норм I-II класса ГОСТа на семена, кроме материала, для очистки которого требуются специальные машины (воздушно-решетные семеочистительные машины, пневмосортировальные столы).

В комплекс входят: автомобилеподъёмник ГУАР-15Н(П) или ГАП-2Ц, машина предварительной очистки зерна ЗД-10000, две воздушно-решетные зерноочистительные машины ЗАВ-10.30000, два триерных блока ЗАВ-10.90000, две барабанные зерносушилки C3CБ-8, четыре нории, зерно-проводы, скребковые транспортеры, централизованная воздушная система с пневмотранспортёром, блок бункеров с опорами, металлическая арматура укрытия очистительного и сушильного агрегатов, пульт управления очистительного агрегата с системы дистанционного контроля уровня материала в секциях блока бункеров, станция управления сушильного агрегата.

При влажности до 20% зерно параллельными потоками поступает в две сушилки. При влажности более 20% сушку производят сначала в одной, а затем во второй сушилке. При этом влажность может быть снижена на 12-14%.

Для очистки и сортирования семенного материал содержащего трудно-отделимые примеси, в блоке комплексом можно использовать семеочисти-тельную приставку СП-10.

Выгрузка из бункеров зерна и отходов в транспорные средства самотёчная.

Оборудование зерноочистительного агрегата смотировано на бункерах с металлическими опорам Металлическая арматура служит каркасом здания. Оборудование сушильного агрегата установлено в здании, монтируемом из металлического каркаса, опор, сборных ферм и перекрытия, входящих в комплект оборудования комплекса.

Топливом для сушилки служит тракторный керсин,смесь тракторного керосина с моторным топливом, или печное бытовое топливо (ТПБ).

Комплекс сооруж ается по типовому проекту № 812-55.

Обслуживают два механика.

Рекомендуется для зон: 1...4, 7...12, 14, 17, 18.

2.6 Шахтные зерносушилки

2.6.1 Зерносушилка шахтная стационарная СЗШ-16

Предназначены для сушки зерна пшеницы, ячменя, ржи, овса, кукурузы, гречихи, проса и других зерновых и крупяных культур семенного,продовольственного и фуражного назначения. Входит в состав оборудования зерноочистительно-сушильных комплексов.

Рабочие органы: две параллельно расположенные шахты с коробами и охладительное устройство (две вертикальные выносные охладительные колонки).

Каждая шахта состоит из двух однотипных секций, кмеющих по семь рядов коробов для подачи и столько же для отсасывания теплоносителя (смеси топочных газов с воздухом). Пространство между шахтами используют в качестве подающего диффузора, к нижней части которого присоединён трубопровод подачи теплоносителя.

Каждую шахту обслуживает отдельный вентилятор.

Подвижная каретка разгрузочного механизма движется возвратно-поступательно с малой амплитудой. Кроме того, каретка периодически совершает движение с большой амплитудой колебания, открывая выход значительной массе зерна и предупреждая этим сводообразовани зерна в шахте.

Каждая охладительная колонка образована двумя концентрическими цилиндрами. Основная часть их перфорирована, а верх сплошной. Кольцевое пространство между цилиндрами заполняют зерном.

Охлаждение происходит благодаря прохождению воздуха через слой зерна. В нижней части колонки охлаждённое зерно выпускают при помощи шлюзового затвора.

Топка металлическая, горизонтальная, цилиндрической формы. Состоит из камеры сгорания с кожухом и улиткой, топливной аппаратуры, системы зажигания и контроля факела. Форсунка механическая со сменными распылителями. Факел контролируется фотоэлементом. В качестве топки может быть использован топочный агрегат TБ- 1,5(ТАУ-1,5).

Топливом служит тракторный керосин или смесь тракторного керосина и моторного топлива, или печное бытовое топливо (ТПБ).

Сушилка может работать как с одновременным поступлением свежего зерна в обе шахты (параллельная работа шахт), так и с последовательным прохождением его через обе шахты. При этом зерно, нагретое в первой шaхтe, охлаждается в колонке. При последовательном, прохождении зерна через шахты за один пропуск влажность может быть снижена на 12-14%.

Зерно в шахты и охладительные колонки загружают нориями. Необходимый уровень зерна поддерживается зерносливами и специальной системой с датчиками уровня.

Машинами и механизмами агрегата управляют дистанционно со станции управления, используя систему блокировки и сигнализации

Зерновая шахтная сушилка СЗШ-16Р отличается от сушилки СШР-16 конструкцией топки, зернопроводов шахт, охладительной колонки и ряда других узлов. Топочный агрегат ее оборудован теплообменником, позволяющим сушить зерно чистым подогретым воздухом.

Обслуживает персонал комплекса. Рекомендуется для зон: 1...20.

2.6.2 Зерносушилка М-819

Зерносушилка шахтного типа М-819 предназначена для сушки семенного, продовольственного и фуражного зерна пшеницы, ржи, ячменя, овса, кукурузы, риса и других зерновых, зернобобовых и масличных культур. Начальная влажность зерна до 30%. Стационарная, непрерывного действия: Сушка производится чистым подогретым воздухом. Используется в зерноочистительно-сушильных комплексах. и других поточных линиях. Производительность при сушке продовольственного зерна пшеницы при снижении ваажности с 20 до 14% 20 т в час основного времени. Общая установленная мощность электродвигателей 90 кВт.

2.6.3 Барабанная зерносушилка СЗСБ-8

Сушилка зерновая барабанная стационарная СЗСБ-8 (рис.2.8.) предназначена для сушки зерна различных культур любой степени влажности и засорённости.

Входит в комплект машин зерноочистительно-сушильных комплексов.

Сушилка непрерывного действия, с односторонней подачей теплоносителя.

Основные узлы: сушильный агрегат и охладительная колонка. Основные узлы сушильного агрегата: топка с топливным баком, загрузочная камера с коническим дном, сушильный барабан с подъёмно-лопастной системой, разгрузочная камера, вентилятор, приводной механизм и электрооборудование. Узлы сушилки монтируют на фундаменте.

Охладительная колонка выполнена в виде двух перфорированных, концентрически расположенных цилиндров. Кольцевое пространство между цилиндрами заполняется зерном, продуваемым наружным воздухом. В верхнюю часть колонки встроен вентилятор.

Привод механизма сушильного барабана включает электродвигатель, двухступенчатый редуктор и приводные ролики.

Топливом является тракторный керосин, смесь тракторного керосина с моторны м топливом или печное бытовое топливо (ТПБ).

Обслуживает персонал комплекса. Рекомендуется для зон: 1...3, 7.-..12, 14, 18.

Рис. 2.8. Зерносушилка СЗСБ-8

1 - переходник; 2- топка; 3 - загрузочная труба; 4- лопасть; 5- кольцо-бандаж; 6- крестовина; 7- полочка; 8- сушильный барабан; 9,12- вентиляторы; 10,11- цилиндры; 13,14,- датчики уровня; 15- конус; 16,20- шлюзовые затворы; 17- нория; 18- бункер; 19- выгрузная камера; 21- ролики; 22- приводная станция

2.6.4 Зерносушилка шахтная стационарная «Антти»

Зерносушилка шахтная стационарная «Антти» (рис. 2.9) состоит из бункера для хранения для влажного зерна, элеватора, сушильных коробов, сушильной топки, охлаждающего вентилятора, питающего устройства с автоматическим управлением.

Рабочий процесс сушки зерна в зерносушилке «Антти» протекает следующим образом. Сырое зерно поступает в приемный ковш нории, поднимается вверх и через надсушильный бункер поступает в шахту.

В сушильной шахте установлены короба, имеющие сверху наклонные грани, по которым скользит зерно. С их помощью осуществляется подвод и удаление агента сушки. После обработки в сушильной камере высушенное зерно направляется в подсушильный бункер, откуда поступает в приёмный ковш нории и направляется в бункер доля хранения.

Зерносушилки «Антти», поставляемые в Карелию периодического действия производительностью 1-5 т/час, комплектуются системой автоматического управления.

Бункер активного вентилирования БB-25 (рис.2.10) используют для временной консервации и подсушки семян. Он представляет собой металлический цилиндр 1 с отверстиями, поддерживаемый подпорками. Внутри цилиндра 1 установлен перфорированный цилиндр 2, являющийся возду-хораспределительной трубой. Кольцевой промежуток между цилиндрами .заполняют зерном.

В воздухораспределительной трубе на тросе подвешен воздушный клапан 3, который можно поднимать и опускать лебедкой в зависимости от заполнения кольцевого промежутка зерном. Если влажность зерна не выше 22%, бункер полностью заполняют зерном; при влажности 28...30% его заполняют наполовину.

Перед заполнением наружного цилиндра зерном поднимают воздушный клапан 3, а после заполнения до требуемого уровня, клапан опускают с таким расчетом, чтобы его верхний край расположился на 20 см ниже уровня зерна у внутреннего цилиндра 2. Суммарная установленная мощность электродвигателя и электроподогревателей 29,5 кВт.

Из четырех бункеров БB-25 составляют отделение вентилируемых бункеров ОБВ-100, которое используют нe только для временного хранения зерна с его подсушиванием, но и для зимнего хранения семян.

В процессе модернизации вместимость бункера активного вентилирования БB-25 повышается до 40 т. Из четырех таких бункеров составляют отделение вентилируемых бункеров ОБВ-160 вместимостью 160 т. Отделение ОБВ-160 можно использовать самостоятельно или в составе зерноочистительных агрегатов и зерноочистительно-сушильных комплексов. Установленная мощность электродвигателей ОБВ-160 - 260 кВт. Кроме того, для временного хранения зерна созданы бункера активного вентилирования зерна вместимостью 400 и 600т. В комплеке можно включить шахтную сушилку производительностью 40 т/ч.

Подготовлена к производству машина для охлаждения влажного свежеубранного зерна с целью увеличения срока его безопасного хранения. Машина подает воздух, охлажденный до 5°С, в вентилируемые бункера или другие воздухораспределительные устройства. Производительность до 100 т зерна в сутки.

2.7 Анализ средств послеуборочной обработки зерна

Анализ средств послеуборочной обработки зерна и проведённый патентный поиск выявил большое разнообразие конструкций зерносушилок.

Они отличаются конструктивным исполнением, размерами, техноло-гическим процессом. Имеются как стационарные, так и передвижные зерносушилки.

Основными энергоносителями в них дизельное топливо или электроэнергия.

Из-за того, что основные зерносушилки «Антти», поставляемые в Карелию, периодического действия - это снижает темпы уборки, т.к. после заполнения сушилки (примерно 20т) дальнейшая уборка прекращается. А в условиях республики такая организация уборки чревата потерями урожая из-за резкого изменения погодных условий.

В настоящее время в связи резким подорожанием нефтепродуктов и электроэнергии применение сушилок для производства зерна в Карелии является низкоэффективным.

Снижение затрат энергии возможно за счёт активного вентилирования зерна в бункере БВ- 25 и применением топливосжигающей установки, работающей на нетрадиционных источниках энергии (дровах, растительных остатках). Однако при длительном нахождении в бункере зерно слёживается, что уменьшает эффективность процесса. Следовательно, для ускорения сушки необходимо обеспечить принудительную циркуляцию зерна в бункере, что и определяется как основная задача модернизации сушилки.

3. ТЕХНОЛОГИЧЕСКИЙ РАСЧЁТ ЗЕРНОСУШИЛКИ

3.1 Определение размеров и исходных данных для теплового расчёта сушилки

Производственные посевы зерновых в хозяйстве составляют 100га. На основе технологической карты (при урожайности 20 ц/га) определяем общий годовой объём производства зерна, который будет равен приблизительно 200 тоннам. Продолжительность уборки по календарным срокам с 25 августа по 5 сентября одним комбайном будет 10 дней. За смену комбайн намолачивает 20 т. Исходя из этой массы М, определяем необходимый объём бункера для сушки зерна, убранного за одну смену:

V = М с,

где с = 700 кг/м3 - плотность зерна.

Таким образом, объём бункера составит V = 28,6 м3.

По формуле объёма цилиндра V = р r2 H определяем размеры бункера и принимаем равными r = 1,5 м и Н = 8 м.

Тепловой расчёт сушилки производим по методике изложенной в / 4/.

Для этого используем следующие исходные данные.

Состояние наружного воздуха характеризуют температура to = 10…180С, относительная влажность цо = 80%, влагосодержание do = 32 г/ кг с.в., и энтальпия Но = 40 кДж/кг . После прогрева и смешивания с топочными газами сушильный агент ( подогретый воздух) с параметрами t1 = 600С, ц1 = 10%, d1 = 15 г/ кг с.в., и Н1 = 90 кДж/ кг поступает в бункер. Параметры отработавшего агента сушки - t2 = 400С, ц2= 50%, d2 = 24 г/кг с.в., и Н2 = 100 кДж/кг

Влажный материал (зерно) в количестве М1 = 20000кг при температуре и1 = 200С и влажности щ1 = 35 % поступает в сушильную камеру. Его параметры после сушки соответственно равны М2 = 13000 кг , и2 = 400 С, щ2 =15%.

3.2 Расчёт количества испаряемой влаги

В процессе сушки часть влаги из зерна испаряется. Масса удаляемой влаги W равна разности между массой зерна до М1 и после М2 сушки:

W = M1 - М2 = (3.1)

Масса абсолютно сухого материала (зерна) Мо в процессе сушки и охлаждения остаётся постоянной:

100 - w1 100 - w2

Мо= М1 ----- = М2 ----- = const. (3.2)

100 100

Из уравнения (3.2) определяется масса зерна при выходе из сушильной камеры:

100 - w1

М2 = М1 ----- , (3.3)

100 - w2

Произведя расчёты получим М2 = 13000 кг.

Подставив значение М2 в уравнение (3.1), получим массу удаляемой влаги:

100 - w1 100 - w1

W= М1 - М1 ----- = М1 {1 - ----- } , (3.4)

100 - w2 100 - w2

Отсюда W= 7000 кг.
Убыль материала в процессе сушки составляет (%):
w1 - w2 35 - 15
D = ----- 100 .= ----- 100 = 23 % (3.5)
100 - w2 100 - 15
3.3 Расчёт расхода воздуха и тепла

Расчёт расхода воздуха. Испарившаяся из зерна влага в процессе сушки поглощается агентом сушки. Следовательно, общее количество влаги, поступившее в сушильную камеру и вышедшее из неё после сушки, остаётся постоянным. Уравнение баланса влаги записывается так:

w1 d1 w2 d2

G1 --- + L --- = G2 --- + L ---- , (3.6)

100 1000 100 1000

w1 w2

где G1 -- и G2 -- -

100 100

соответственно количество влаги, поступившей в сушильную камеру и вышедшей из неё с материалом (зерном)

d1 d2

L --- и L --- , -


Подобные документы

  • Сведения о регионе возделывания зерна (Алтайский край). Показатели качества партий зерна и семян. Формирование партий зерна с учетом его качества. Поточная линия обработки зерна. Технология послеуборочной обработки зерна (семян). Сушка зерновых масс.

    курсовая работа [67,8 K], добавлен 27.11.2012

  • Характеристика токового хозяйства ООО Агрофирма "Ильинка". Технология послеуборочной обработки зерна: его очистка, сушка, активное вентилирование и хранение. Расчет потребной емкости хранилищ. Эффективность реализации зерна в зависимости от его качества.

    курсовая работа [950,3 K], добавлен 29.08.2011

  • Задачи, выдвигаемые в области хранения сельскохозяйственных продуктов. Особенности обработки и хранения зерновых масс (гречихи семенной). Технологический процесс послеуборочной обработки зерна (семян). Классификация линий приема и обработки зерна.

    контрольная работа [59,0 K], добавлен 23.07.2015

  • Прием и размещение на предварительное хранение партий семенного зерна. Технологическая схема послеуборочной обработки зерновых масс. Особенности очистки зерна пшеницы, ячменя, овса, кукурузы. Технология сушки зерна в шахтных и барабанных зерносушилках.

    отчет по практике [1,4 M], добавлен 17.10.2014

  • Требования к послеуборочной обработке зерна. Очистка и сушка, агрегаты и машины для обработки. Технология послеуборочной обработки зерна в хозяйстве на примере СПК "Восход" Чесменского района. Размещение зерна в хранилища, эффективность его реализации.

    курсовая работа [730,4 K], добавлен 29.08.2011

  • Формирование и размещение партий зерна на току. Предварительная оценка качества зерна. Технология послеуборочной обработки зерна в хозяйстве ОАО "Макфа". Активное вентилирование зерна и семян. Контроль и оценка качества работы механизированного тока.

    курсовая работа [64,8 K], добавлен 13.11.2014

  • Предварительная оценка качества зерна в поле. Формирование однородных партий зерна. Очистка зерна от примесей. Искусственная сушка зерна. Режимы сушки продовольственного зерна. Меры по предупреждению потерь зерна. Процесс жизнедеятельности зерна и семян.

    реферат [309,4 K], добавлен 23.07.2015

  • Изучение технологии послеуборочной обработки, хранения и реализации зерна. Организационно-экономическая характеристика хозяйства. Режимы, способы хранения семенного и продовольственного зерна. Экономическое обоснование проведения послеуборочной обработки.

    курсовая работа [1,9 M], добавлен 04.11.2012

  • Характеристика свежеубранного зерна. Жизнедеятельность насекомых, клещей и микроорганизмов. Технология послеуборочной обработки зерновых масс. Хранение и размещение зерновой массы. Методика составления плана послеуборочной обработки зерна на току.

    курсовая работа [60,1 K], добавлен 06.05.2012

  • Характеристика хозяйства СПК "АЯТ". Технология послеуборочной обработки зерна, технология хранения. Расчет потребной емкости хранилищ. Размещение зерна в хранилище. Правила контроля за хранящимся зерном. Реализация зерна в зависимости от его качества.

    курсовая работа [3,0 M], добавлен 29.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.