Методы химического анализа

Теоретические основы аналитического контроля качества продукции. Автоматизация аналитического контроля продукции химико-технологических производств. Оптические методы химических исследований. Электрохимические методы анализа. Хроматографический метод.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 30.08.2010
Размер файла 271,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

J / J0 = Т (3.9)

Отношение J / J0 указывает на степень пропускания раствором светового потока и называется прозрачностью, а иногда пропусканием раствора. Коэффициент Т показывает, какая доля светового потока прошла через раствор, и принимает значение от 0 до 1.

Чем больше поглощается световой поток, тем меньше J по сравнению с J0, тем больше величина коэффициента Т.

Величина обратная прозрачности (выражение 3.10) называется непрозрачностью или поглощением раствора. Отношение мощности света, поглощенного раствором, к мощности падающего света ( Jn / J0 ), называется поглощающей способностью.

1 / Т = J0 / J (3.10)

Логарифмированием выражения 3.10 рассчитывается оптическая плотность раствора (выражение 3.11). Она показывает степень поглощения излучения в зависимости от толщины слоя раствора и его окраски.

?g J0 / J = Д = ?g пL = L ?g n , (3.11)

где: L - толщина поглощающего слоя;

?g n - постоянная величина, характерная для конкретного окрашенного раствора при прохождении через него света определённой длины;

Д - оптическая плотность (эту величину также называют абсорбционностью).

Выражение 3.11 отражает закон Бугера - Ламберта: слои вещества одинаковой толщины при прочих равных условиях всегда поглощают одинаковую долю падающего на них светового потока. Оптическая плотность вещества прямо пропорциональна толщине поглощающего слоя.

Позднее Бером было установлено, что поглощение света газами и растворами зависит от числа частиц в единице объёма, встречающихся на пути светового потока, т. е. от концентрации вещества в исследуемом растворе.

Закон Бугера - Ламберта - Бера устанавливает зависимость интенсивности поглощения света от концентрации вещества в растворе (С), толщины светопоглощающего слоя раствора(L) и молярного коэффициента поглощения света ( е). Математическое выражение оптической плотности может быть представлено выражением 3.12. Оно получено экспериментальным путём, правильность его подтверждается с помощью математического аппарата.

Д = е L С (3.12)

Объединённый закон Бугера - Ламберта - Бера является основным законом поглощения света растворами, он трактуется следующим образом: оптическая плотность раствора зависит от концентрации и природы исследуемого вещества, а также толщины слоя раствора, через который проходит световой поток (поток электромагнитных колебаний).

Для наглядности зависимость оптической плотности от концентрации вещества в растворе принято выражать графически, рис. 3.2. Она представлена прямой линий, идущей из начала координат и соответствует уравнению

D = k C ,где k = е L ,а е = k / 2,3.

Молярный коэффициент светопоглощения представляет оптическую плотность одномолярного раствора при толщине слоя светопоглощающего раствора 1 см.

е = Д / LС (3.13)

Если С = 1 моль/л, L = 1 см, то Д = е

Величина молярного коэффициента поглощения е:

зависит - от длины волны проходящего света, температуры раствора и природы растворённого вещества;

не зависит - от толщины поглощающего слоя и концентрации растворённого вещества.

Д

б

Д3

tgб = е

Д2

Д1

C1 C2 C3 C

Рис. 3.2. Зависимость оптической плотности от концентрации вещества

3.5.2 Молярный коэффициент светопоглощения

Молярный коэффициент светопоглощения отражает индивидуальные свойства вещества (окрашенного) и является их характеристикой. Для разных веществ он имеет различную величину. У слабоокрашенных веществ (например, хромат калия) молярный коэффициент светопоглощения составляет 400 - 500, а у сильноокрашенных (например, дитизонат цинка) - 94 000.

Следует иметь в виду, что значение молярного коэффициента поглощения, как правило, не превышает значения 100 000 - 120 000 для наиболее интенсивно окрашенных соединений. Его значение определяется экспериментально спектрофотометрическими методами.

Молярный коэффициент светопоглощения является характеристикой чувствительности фотометрических реакций, чем больше его величина, тем чувствительнее и точнее определение. При выборе реактивов, дающих цветовую реакцию с определяемым веществом, выбирают тот, который образует соединения с максимальным коэффициентом светопоглощения.

Из закона Бугера-Ламберта-Бера вытекают два вывода, которые имеют практическое значение.

Первый вывод. При одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Доказательство. Предположим, что имеются два раствора одного и того же вещества, но с разной концентрацией. Согласно закону Бугера-Ламберта-Бера (см. выражение 3.11) оптическая плотность (Д) каждого раствора может быть представлена следующими математическими выражениями:

?g = еL1C1 ?g = еL2C2

Принимая во внимание, что исследуемые растворы одинаково освещены, т. е. на них воздействует световой поток интенсивностью равной J0. Выравнивание световых потоков (J1 = J2), прошедших через растворы может быть достигнуто подбором толщин просвечиваемых растворов L1 и L2. Исходя из этого, имеют место следующие равенства:

?g = ?g следовательно еL1C1 = еL2C2, а так как е1 = е2 тогда L1C1 = L2C2.

Таким образом -- при одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Второй вывод. При условии равенства толщин исследуемого раствора и стандартного раствора одного и того же вещества (L1 = L2) зависимость между их оптической плотностью и концентрацией прямопропорциональна:

=

Оптическая плотность раствора, содержащего несколько окрашенных веществ, обладает свойством аддитивности, которое называют законом аддитивности светопоглощения (аддитивность-лат. additio прибавление-результат получаемый путём сложения). В соответствии с этим законом поглощение света, каким - либо веществом не зависит от присутствия в растворе других веществ, так как каждое из окрашенных веществ будет вносить свою величину в экспериментально определяемую оптическую плотность -- Д.

Д = Д1 + Д2 + Д3, т. к. L-const, то имеет место сумма (е1C1 + е2C2 + е3C3)

3.5.3 Спектры поглощения

Все окрашенные соединения характеризуются избирательным поглощением света.

Для характеристики окрашенных растворов различных окрашенных соединений пользуются их спектрами поглощения -- кривыми светопоглощения, которые определяют зависимость оптической плотности Д или молярного коэффициента поглощения е от длины волны л или частоты г

Д = f(л) Д = f(г)

е = f(л) е = f(г)

Для получения такого спектра (кривой светопоглощения) в таких координатах -- проводят серию измерений оптической плотности или молярного коэффициента светопоглощения при различных длинах волн, измерение проводится вначале через 10 - 20 нм, а после границы максимума измеряют через 1 - 2 нм.

Поглощение света измеряют в оптическом диапазоне спектра в ультрафиолетовой (185 - 400 нм), видимой (400 - 760 нм) и инфракрасной (760 - 1000 нм) областях спектра. Кривые светопоглощения снимают с помощью спектрофотометров, рис 3.3.

У окрашенных веществ максимум поглощения света, в большинстве случаев, находится в видимой области спектра (? 500 нм), но не может быть смещен в ультрафиолетовую область (K2CrO4), а также может смещаться и в инфракрасную -- (CuSO4).

Спектры поглощения позволяют выбрать оптимальную длину волны для аналитических измерений. Максимуму спектра поглощения соответствует максимальное значение молярного коэффициента поглощения -- Еmax, т.е. максимальной чувствительности.

Д 3

1,4 max

--

--

1,0 -- 1

--

--

--

-- 2

* * * * * *

0 100 200 300 400 500 л

Рис. 3.3. Спектры поглощения водных растворов хромата (1), дихромата (2) и перманганата (3) калия

Величина Д = ?g характеризует поглощательную способность вещества, называемую поглощением или светопоглощением -- эту величину снимают со шкалы прибора при аналитических определениях. Иногда шкала колибруется на пропускание -- Т, %.

Между оптической плотностью Д и пропусканием Т существует связь, выражение 3.14.

Т = · 100 =

?g = ?g100 - ?gТ ?g = Д Д = ?g100 - ?gТ = 2 - ?gT

Д = 2 - ?gT (3.14)

Зависимость оптической плотности от концентрации выражается графиком, рис.3.2.

Тангенс угла наклона (б) градуировочного графика к оси (С) указывает на чувствительность метода. Чем больше угол наклона к оси концентрации градуировочного графика, тем более чувствителен метод определения.

На основании закона Бугера - Ламберта - Бера можно определить нижнюю границу диапазона содержания определяемых веществ (Сmin)

Дmin = Eл · L · Cmin, если L = 1 см Сmin =

Использование закона Бугера - Ламберта - Бера позволяет проводить различные расчёты на основании фотометрических измерений и определений.

Пример: Вычислить молярный коэффициент поглощения железа в растворе, содержащем 0,0028 г Fe в 500 мл раствора, при L = 4 см, если Д = 0,28.

Приводит концентрацию к системе моль/л.

0,0028 г -- 500 мл

Х -- 1000 Х = 0,0056 г/л

Fe / 56

56 г -- 1 моль

0,0056 -- Х Х = = 10-4 моль/л

Д = е · L · C е = = 700

Пример: Вычислить концентрацию ионов железа [Fe3+] в мг/л в промышленной воде, если после обработки 100 мл этой воды получено 25 мл окрашенного раствора с оптической плотностью Д = 0,46 при L = 1 см и е = 1100.

1. Д = е · L · C C==4,18·10-5 моль/л

4,18·10 -5 - 1000 мл

Х 25 мл Х== 0,104·10-5моль

56 г - 1 моль

Х - 0,104·10 -5 Х==5,85·10-5 г в 25 мл

5,85 · 10-5 ---------- 100 мл

Х ---------- 1000 мл Х = 5,85 · 10-4 г/л = 5,85 · 10-1 мг/л = 0,585 мг/л

По данным фотометрических определений можно найти молярный коэффициент светопоглощения, концентрацию ( %, моль/л, титр) и др. величины.

При работе с разбавленными окрашенными растворами измерение их оптической плотности следует производить в той области спектра, где поглощение лучей максимально. Это позволит провести количественное определение с наибольшей точностью и чувствительностью.

Рассмотрим точность измерений оптической плотности окрашенного раствора на разных участках видимой области спектра.

Обычно вещества максимально поглощают лучи л е= 550 нм и минимально при л = 640 нм.

Рассмотрим, как изменяются оптические плотности трёх растворов с разными концентрациями С1, С2, С3, причём С1>C2>C3, при лmax и лmin, построим график, рис. 3.4.

При изменении концентрации вещества в интервале ДС изменение оптической плотности ДД при лmax будет значительно больше, чем при лmin, это обуславливает наименьшую погрешность измерения, т.е. наибольшую точность.

Спектр поглощения характеризует зависимость оптической плотности (или молярного коэффициента поглощения) от длины волны.

Область максимального поглощения лучей характеризуется также размытостью максимума поглощения -- интервалом длин волн (л1/2max -- л1/2min) отвечающим половинным значениям максимального молярного коэффициента поглощения или максимальной оптической плотности раствора. Максимум поглощения света в определённой области является важной оптической характеристикой.

Д

max

л, нм

Д Д

C1 tgб

? ?

?C2 ?

C3 ДД

? ? tgб

? ?

? ДД ?

? ? ?

550 650 л С3 С2 ДС С1 С

лmax = 550 лmin = 650 при лmax -- ДД> в интервале ДС

Рис. 3.4. Графики, отображающие зависимость оптической плотности растворов от их концентрации

Спектр поглощения характеризуется наличием в нём определённого числа полос. Каждая полоса характеризуется положением максимума и выражается соответствующей длиной волны лmax, высотой -- Дmax, или Еmax и полушириной, т.е. расстояние между длинами волн, соответствующим половинным значениям максимальной оптической плотности л1/2max -- л' 1/2max

Кривые спектров поглощения позволяют выбрать оптимальную длину волны при аналитических исследованиях.

3.5.4 Взаимодействие света с дисперсными гетерогенными системами

Некоторые элементы не дают окрашенных аналитических форм, или образуемые соединения не достаточно устойчивы. Поэтому фотометрическое определение таких компонентов не проводится, а используется способность таких веществ образовывать достаточно устойчивую дисперсную систему (взвесь мельчайших твёрдых частиц в растворе). Например, это относится к определению Cl-, SO42-, C2O42- и др. ионов, которые образуют осадки. Для предотвращения коагуляции частиц в дисперсной системе (суспензии) вводятся стабилизирующие коллоиды (желатин, крахмал и др.).

Ag+ + Cl- > vAgCl Образовались белые

Ba2+ + SO42- > vBaSO4 осадки гетерогенных

Ca2+ + C2O42- > vCaC2O4 систем.

При прохождении света через дисперсную гетерогенную систему происходит ослабление светового потока в результате рассеивания и поглощения его частицами дисперсной фазы. Интенсивность рассеяния возрастает с увеличением числа рассеивающих частиц

J0 = Jn + Jp + J

Это явление используется в турбидиметрических и нефелометрических методах для качественной и количественной оценки анализируемых веществ, рис. 3.5

J

J0

Jр

Рис 3.5. Схема .измерения световых потоков в турбодиметрии и нефелометрии

Турбидиметрия основана на измерении интенсивности светового потока, прошедшего через дисперсную систему -- J.

Нефелометрия основана на измерении интенсивности светового потока, рассеянного дисперсной системой -- Jр.

Турбидиметрия и нефелометрия подчиняются некоторым закономерностям, которые перестают действовать, когда размеры частиц дисперсной системы приближаются к длине волны падающего света.

В турбидиметрии пользуются соотношением, аналогичным закону Бугера -Ламберта - Бера, с заменой коэффициента светопоглощения на коэффициент мутности, выражение 3.15.

Д = ?g = t L , (3.15)

где: t -- коэффициент мутности;

L -- толщина слоя.

Коэффициент мутности, это величина, обратная толщине такого поглощающего слоя, которая уменьшает интенсивность падающего светового потока в 10 раз.

В нефелометрии измеряют интенсивность светового потока, который дисперсная система рассеивает (Jр), а способность частиц к рассеиванию определяется размером частиц и длиной волны падающего света, что выражается уравнением Рэлея (выражение 3.16).

Jp = J0 [F( ) · (1 + соsQ)] , (3.16)

где: F - функция от показателей преломления F = n12 - ; n -- коэффициент преломления растворителя;

n1 -- коэффициент преломления частиц;

N -- общее число частиц в данном растворе;

V -- объём частиц взвесей, рассеивающих свет;

л -- длина волны падающего света;

R -- расстояние от детектора (до наблюдателя);

Q -- угол рассеивания между падающим и рассеянным потоками.

Если определяется только размер частиц и их концентрация, то измеряется интенсивность рассеянного света под одним углом. В этом случае уравнение Рэлея представляется в виде:

Jp = J0 · k · c · V

Градуировочный график в нефелометрии строят в координатах Jр -- С.

Мутность дисперсной системы, в соответствии с уравнением Рэлея, можно выразить коэффициентом мутности или коэффициентом светопоглощения :

t = , Д =

Если взять отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, оно будет равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц.

Используя метод нефелометрии можно определить содержание сульфат-ионов, содержание хлорид-ионов и др. ионов в приготовленных растворах, а также в природных веществах.

Турбодиметрические и нефелометрические определения обладают чувствительностью соизмеримой с фотометрическими определениями. Эти методы в практике производственных лабораторий применяют ограниченно, т. к. трудно получить одинаковые по размерам частицы взвеси. Их, как правило, заменяют фотометрическими и электрометрическими методами.

3.5.5 Роль химической реакции, используемой в фотометрическом анализе

Химические реакции, используемые в фотометрическом анализе, несмотря на различие в их химизме, должны обязательно сопровождаться возникновением, изменением или ослаблением светопоглощения (цвета) раствора. Каждая цветная реакция должна протекать избирательно, быстро, полностью, строго по уравнению и в соответствии с законами стехиометрии.

Кроме того, окраска образующейся аналитической формы должна быть устойчивой во времени к действию света и других внутренних и внешних факторов. В тоже время, светопоглощение раствора, несущее информацию о концентрации поглощающего вещества, должно подчиняться законам, связывающим светопоглощение и концентрацию вещества в поглощающем растворе.

В неорганическом фотометрическом анализе наиболее часто используют реакции комплексообразования ионов определяемых элементов с неорганическими и органическими реагентами, реже реакции окисления-восстановления, синтеза и других типов.

В органическом фотометрическом анализе чаще применяют реакции синтеза окрашенных соединений, которыми могут быть азосоединения, полиметиловые и хинониминовые красители, отдельные представители нитросоединений и др. Иногда используют собственную окраску вещества.

При фотометрических определениях в результате аналитической реакции получают окрашенное соединение, которое можно считать удобным для применения, если оно имеет постоянный состав, отвечающий определённой химической формуле.

Постоянный состав окрашенного соединения обуславливает постоянство интенсивности окраски раствора и является одним из основных факторов, влияющих на точность фотометрического определения. Однако на практике этот принцип нарушается по нескольким причинам:

а) Непостоянство состава окрашенного комплекса в связи со ступенчатым характером его образования и диссоциации.

Например, ион Fe3+ образует с SCN- ряд комплексных ионов кроваво-красного цвета различной интенсивности в зависимости от избыточной концентрации [SCN-], моль/л.

[SCN-] = 5 · 10-3 Fe3+ + SCN- = [FeSCN]2+

[SCN-] = 1,2 · 102- Fe3+ + SCN- = [Fe(SCN)2]+

[SCN-] = 4 · 10-2 Fe3+ + SCN- = [Fe(SCN)3]0

[SCN-] = 1,6 · 10-1 Fe3+ + SCN- = [Fe(SCN)4]-

[SCN-] = 7 · 10-1 Fe3+ + SCN- = [Fe(SCN)5]2-

Чтобы избежать больших ошибок из-за непостоянства интенсивности окраски анализируемых растворов, необходимо выбирать такие реагенты, с которыми определяемый ион давал бы прочное комплексное соединение, состоящее из одного комплексного иона.

Если такой реагент выбрать невозможно, то определение следует проводить при избыточных, но одинаковых концентрациях реагента в стандартном и исследуемом растворах. Несоблюдение этого условия приводит к получению окрашенных растворов различной интенсивности и к ошибкам.

б) Разложение окрашенного соединения во времени.

Многие окрашенные соединения изменяют, интенсивность своей окраски во времени. Иногда, скорость реакции мала и образование окрашенных соединений происходит не сразу, а по истечении некоторого времени -- (10-20 мин) достигает максимального и постоянного значения.

В других случаях образование окрашенного соединения происходит очень быстро, но спустя некоторое время интенсивность окраски начинает уменьшаться и может вообще обесцветиться. Это может произойти по причине окислительно-восстановительных реакций между реагирующими ионами, либо окрашенное соединение разрушается под влиянием присутствующих в растворе посторонних веществ, изменение рН среды, явлений ассоциации, ротолиза и др.

В фотометрическом анализе можно использовать только такие окрашенные соединения, которые сохраняют устойчивую окраску не менее 10-15 минут.

Иногда к исследуемому окрашенному раствору добавляют стабилизаторы -- желатин, крахмал, гуммиарабик и др.

Если нет сведений об изменении интенсивности окраски во времени каких-то соединений, применяемых в фотометрическом анализе -- можно получить такие сведения практически. Для этого нужно приготовить 2-3 пробы окрашенного соединения и проследить за изменением интенсивности его окраски в течение времени сравнивая со свежеприготовленными растворами той же концентрации визуально, или измерив оптическую плотность.

в) Изменение состава окрашенного комплекса по причине присутствия посторонних веществ, взаимодействующих с определяемым ионом или выбранным реагентом.

Посторонние ионы, присутствующие в анализируемом растворе одновременно с определяемым ионом часто оказывают значительное влияние на результаты фотометрического анализа.

Например, при определении Fe3+ присутствие небольших количеств фторид-ионов вызывает заметное обесцвечивание раствора роданида железа (Кр = 5,2 · 102), так как ионы железа связываются в более прочный фторидный комплекс (Кр = 1,6 · 10-5) и не при каких значениях рН раствора влияние фторид-ионов устранить не удаётся.

В присутствии фторид-ионов Fe3+ следует определять с помощью другого реагента, например, салициловой кислоты. Она при взаимодействии с Fe3+ образует более прочный салицилатный комплекс, что устраняет мешающее действие фторид-ионов.

Влияние рН на окрашенные комплексы выражается в различных формах, но чаще всего сводится к разрушению или изменению состава окрашенного соединения.

Иногда оно способствует образованию окрашенных комплексов с посторонними ионами, присутствующими в растворе, а также обуславливает изменение растворимости окрашенных соединений и влияет на состояние окислительно-восстановительного взаимодействия.

3.5.6 Классификация приборов для фотометрических измерений

Приборы в фотометрических измерениях и определениях предназначены для разложения электромагнитного излучения оптического диапазона на монохроматические составляющие с последующим измерением оптической плотности растворов. К ним относятся фотометрические приборы - фотоэлектроколориметры и спектрофотометры. В этих приборах аналитическим сигналом является светопоглощение анализируемого раствора.

Фотометрические приборы, применяемые для измерения величины светопоглощения растворов, классифицируются по следующим признакам, рис. 3.6:

1.По способу регистрации измерений -- регистрирующие и нерегистрирующие.

2.По способу разложения излучения, т.е. по способу монохроматизации лучистого потока (призменные, дифракционные). Приборы, в которых монохроматизация достигается с помощью светофильтров, называют фотоэлектрополяриметрами. Приборы, позволяющие достигать высокую степень монохроматизации светового потока, называют спектрофотометрами.

3. По назначению -- для эликсионного анализа, для абсорбционного анализа.

4 .По области, в которой работает прибор -- инфракрасной, видимой, ультрафиолетовой.

5. По устройству. Однолучевые приборы - с прямой схемой измерения. Двулучевые приборы - с компенсационной схемой измерения.

3.5.7 Фотоэффект и фотоэлементы

При измерении оптической плотности сравнивают и оценивают различие потоков света: (J0) - направленного на кювету с анализируемым раствором и (J) - прошедшего через раствор.

На практике величину светопоглощения анализируемого раствора измеряют относительно раствора сравнения, который является эталонным. Светопоглощение эталонного раствора, принимается за оптический нуль. Интенсивность регистрируемые потока, проходящего через анализируемый раствор и раствор сравнения, измеряют фотоэлектрическим способом, после преобразования светового электромагнитного излучения в электрический сигнал.

В качестве устройства для измерения плотности светового потока, прошедшего через раствор, используется фотоэлемент. В фотоэлементе энергия электромагнитного излучения преобразуется в электрическую энергию, которая в последующем регистрируется электроизмерительным прибором.

Преобразование энергии электромагнитного излучения в электрическую энергию в фотоэлементе происходит из-за отрыва электронов от атомов различных веществ под воздействием световой энергии. Это явление называется фотоэффектом.

Согласно закону Столетова фототок прямо пропорционален световому потоку, выражение 3.17. Чем больше световой поток, тем больше квантов энергии электромагнитного излучения попадает на поверхность металла, тем большее число электронов освобождается и тем больше будет фототок. Чем больший фототок даёт фотоэлемент, тем он чувствительнее.

I = k J, (3.17)

где: I - фототок, мкА;

k - коэффициент пропорциональности;

J - мощность светового потока, лк (люкс-единица освещённости, в СИ обозначается lx).

Различают два вида чувствительности: общую (интегральную) и спектральную (цветовую). Общая чувствительность фотоэлементов определяется по отношению к свету, излучаемому обыкновенными электрическими лампами накаливания с вольфрамовой нитью. Спектральная чувствительность фотоэлементов - это их чувствительность к свету различных длин волн.

Для измерения мощности световых потоков применяют два типа фотоэлементов:

1) основанных на внешнем фотоэффекте (вакуумные фотоэлементы);

2) основанных на фотоэффекте в запирающем слое («вентильные» фотоэлементы).

Фотоэлементы, основанные на внешнем фотоэффекте, представляют собой вакуумный стеклянный сосуд. На внутреннюю поверхность одной из стенок сосуда наносится щелочной металл, который выполняет функцию фотокатода. В отдельных случаях функцию фотокатода выполняет размещенная внутри металлическая пластинка.

Внутри сосуда перед катодом располагается анод. Он предназначен для сбора электронов, выбиваемых световым потоком из катода.

В фотоэлектроколориметрах и спектрофотометрах используют, как правило, сурьмяно-цезиевые фотоэлементы. Сурьмяно-цезиевые фотоэлементы отличаются высокой разрешающей способностью. Они высокочувствительны во всех областях спектра, очень хорошо работают до температуры равной 500С. Однако при повышении температуры вносятся большие погрешности, для их устранения в современных приборах применяются специальные устройства.

В фотоэлементах с запирающим слоем использована способность полупроводников к внутреннему фотоэффекту, т. е. возникновению тока под действием света на границе между полупроводником и металлом. Чувствительность этих фотоэлементов невелика и равна 540 - 560 нм ( как у человеческого глаза) и зависит от способа обработки поверхности фотоэлемента. Нечувствительность к ультрафиолетовому излучению ограничивает применение селеновых фотоэлементов.

3.5.8 Общие принципы устройства фотометрических приборов

Фотометрические приборы в зависимости от числа используемых при измерении фотоэлементов делятся на две группы:

приборы с одним фотоэлементом (однолучевые или одноплечие приборы);

приборы с двумя фотоэлементами (двулучевые или двуплечие приборы).

А. Однолучевой фотометрический прибор

В нём все основные узлы расположены на одной линии и световой поток (электромагнитное излучение) идёт одни пучком от источника света.

Принципиальная схема однолучевого прибора с прямым способом измерения (КФК-2, КФК-3, СФ-46) представлена на рис. 3.8.

Перед проведением фотометрического измерения в приборе устанавливают необходимый светофильтр (определённую длину волны). Проверяют настройку прибора на электрический нуль.

В световой поток устанавливают кювету с раствором сравнения 4.

Электронным усилителем 6 усиливают фототок с помощью вспомогательной диафрагмы, устанавливают стрелку указывающего прибора на отметку 100 %-ного пропускания, что соответствует оптическому нулю.

Вместо кюветы с раствором сравнения в световой поток помещают кювету с анализируемым раствором, при этом световой поток уменьшается пропорционально его концентрации (в соответствии с законом Бугера - Ламберта - Бера). Стрелка показывающего прибора зарегистрирует величину, соответствующую пропусканию анализируемого раствора. На шкале такого прибора имеется шкала, показывающая степень пропускания, а также логарифмическая шкала оптических плотностей. При необходимости показание по шкале пропускания можно пересчитать на поглощение, используя следующие выражения:

Т = · 100 Д = · 100 = 2 - ?gTНа

Оптическую плотность (пропускание) измеряют относительно эталона, пропускание которого принимают за 100%, а оптическую плотность -- равной нулю.

Б. Двулучевой фотометрический прибор

В двулучевом фотометрическом приборе световой поток делится на два, которые идут параллельно друг другу, рис.3.9. Один поток идёт через кювету с анализируемым раствором, а второй через кювету со стандартным (нулевым) раствором.

На этой основе работают оптические приборы КФК-2 и КФК-3 (колоримерт фотоэлектрический концентрационный). Эти приборы предназначены для измерения в отдельных участках диапазона длин волн 315 - 980 нм, выделяемых светофильтрами, коэффициентов пропускания и оптической плотности растворов и твёрдых тел, а также определения концентрации веществ в растворах методом градуировочного графика.

В схеме КФК-2 на пути светового потока имеется пластина, которая разделяет поток на две части, 10% потока идёт на фотодиод (ФД-7к) при измерениях в области спектра 590 - 980 нм и 90% -- на фотоэлемент (Ф-2в) при измерении в области спектра 315 - 540 нм.

Регистрирующим устройством служит микроамперметр типа М-907, имеющий шкалу деления от 0 до 100, соответствующую шкале пропускания Т. (Её следует пересчитать на поглощение). Если показания регистрирует микроамперметр М-907-10, то он даёт показание в делениях пропускания и оптической плотности определения концентрации веществ в растворах методом градуировочного графика.

В схеме КФК-2 на пути светового потока имеется пластина, которая разделяет поток на две части, 10% потока идёт на фотодиод (ФД-7к) при измерениях в области спектра 590 - 980 нм и 90% -- на фотоэлемент (Ф-2в) при измерении в области спектра 315 - 540 нм.

Регистрирующим устройством служит микроамперметр типа М-907, имеющий шкалу деления от 0 до 100, соответствующую шкале пропускания Т (Её следует пересчитать на поглощение). Если показания регистрирует микроамперметр М-907-10, то он даёт показание в делениях пропускания и оптической плотности определения концентрации веществ в растворах методом градуировочного графика.

Спектрофотометр СФ-46 представляет собой однолучевой прибор со встроенной микропроцессорной системой. Он предназначен для измерения оптической плотности и пропускания жидких и твёрдых веществ в диапазоне волн 190 - 1100 нм.

Диспергирующим элементом служит дифракционная решётка. Световой поток после прохождения всей цепи устройств собирается в один из фотоэлементов -- сурьмяно-цезиевый (186 - 650 нм) или кислородно-цезиевый (600 - 1100 нм). Источниками излучения служит дейтеривая лампа (186 - 350 нм) и лампа накаливания (320 - 1100 нм).

В данном случае фотоэлементы подключены по дифференциальной схеме (токи от фотоэлементов идут навстречу друг другу). На такой основе работают ФЭК-56, ФЭК-57 (фотоэлектрический колориметр-нефелометр), световой поток от источника света после светофильтра делится на два равных потока -- левый и правый, а далее через систему зеркал и линз попадают на кюветы с растворами (анализируемым и стандартным). На пути правого потока щелевая диафрагма (измерительная), она связана со шкалой барабана. На пути левого потока также имеется щелевая диафрагма, служащая для ослабления светового потока, падающего на левый фотоэлемент.

На пути светового потока с помощью специальной рукоятки устанавливаются светофильтры, табл. 3.1.

На измерительных барабанах нанесены две шкалы: чёрная -- процент пропускания, красная -- оптическая плотность. Измерение начинают спустя 20 мин. после включения прибора.

Таблица 3.1

Эффективная длина волны светофильтров

Номер

светофильтра

1

2

3

4

5

6

7

8

9

Эффективная длина волны

315

364

400

440

490

540

582

610

639

Для проведения измерений при перекрытых световых потоках на пути левого потока устанавливают кювету со стандартом, а на пути правого -- кювету с исследуемым раствором и правый барабан устанавливают на полное пропускание -- 100%.

Вращением левого измерительного барабана добиваются смыкания сектора индикаторной лампы. Затем на пути правого потока устанавливают кювету со стандартом и вращением правого барабана снова добиваются смыкания сектора индикаторной лампы. Оптическую плотность отсчитывают по шкале правого барабана.

В. Основные узлы приборов, к ним относятся:

Источники излучения -- чаще ртутно-кварцевая лампа, галогеновая, водородная, дейтеривая;

Светофильтры;

Кюветы;

Фотоэлементы.

Кроме этого, в зависимости от конструкции и типа прибора, могут входить поворотные зеркала, призмы, дифракционные решётки, диафрагмы и т.д.

Светофильтры -- это специальные устройства, выполненные из окрашенного прозрачного материала, чаще цветного стекла, которое используется для регулировки длин волн, получения монохроматического излучения. Для каждого анализа светофильтр выбирают опытным путём, для этого измеряют оптическую плотность с различными светофильтрами одного и того же раствора и строят кривую зависимости оптической плотности (Д) от длины волны (л).

Д max

лmax л

Выбирают светофильтр такой длины волны, при котором поглощение света раствором max, когда светофильтр пропускает максимальное количество света.

Кюветы -- сосуды, изготовленные из прозрачного материала, в которые помещают исследуемый раствор. На рабочей поверхности кюветы указывается толщина слоя с точностью до 0,001. Выбор кюветы осуществляется опытным путём, для этого измеряют оптическую плотность одного и того же раствора в кюветах разной толщины и выбирают ту, для которой оптическая плотность (Д) приближена к 0,4. Д = 0,4, т.к. шкала прибора на разных участках имеет разную относительную ошибку, а в области Д = 0,4 эта ошибка минимальна.

Например, экспериментально найдены результаты:

Толщина к4юветы, мм

5

10

20

30

50

Оптическая плотность

1,12

0,38

0,65

1,02

1,30

Следовательно, для данного определения целесообразнее выбрать: h = 10 мм

Конденсоры -- устройства, которые представляют линзу или систему линз, позволяющие направлять световой поток параллельным пучком

Фотоэлементы, устройства, предназначенные для перевода световой энергии в электрическую, см. раздел 3.5.7.

3.6 Рефрактометрический метод анализа

Метод, основанный на измерении показателя преломления светового потока при прохождении его через анализируемый раствор, называется рефрактометрическим. Он широко применяется как в лабораторной, так и в промышленной практике.

С помощью рефрактометрического метода быстро определяют концентрации водных, спиртовых эфирных и других растворов. Им пользуются в лабораториях и автоматизированных линиях аналитического контроля химической нефтехимической, фармацевтической и пищевой промышленности. Его применяют при идентификации и установлении чистоты толуола, бензола, керосина, водно-спиртовых смесей, сахара, вина, а также при аналитическом контроле производства синтетического каучука, волокон, пластмасс и др. продукции.

3.6.1 Теоретические основы метода

При переходе луча света из одной прозрачной среды в другую, направление его меняется, рис. 3.10. Это явление называется преломлением.

Известно, что при прохождении света через оптически более плотную среду его скорость уменьшается. Замечено, что при этом угол падения луча при выходе из среды изменяется. При переходе луча из среды менее оптически плотной в среду более оптически плотную угол падения луча (б) больше угла преломления (в), таким же образом изменяется и скорость распространения световых волн.

Отношение синуса угла падения к синусу угла преломления называется относительным показателем преломления второй (анализируемой) среды относительно первой (эталонной), выражение 3.6.1.

Sin б / sin в = v1 / v2 = n (3.6.1)

Показатель преломления зависит от природы вещества, температуры и длины волны света.. Например, для температуры 200 С и длины волны 589 нм показатели преломления п некоторых веществ имеют следующие значения: стекло 1,5 - 1,9; алмаз - 2,42; плавленый кварц - 1,46; кристаллический кварц - 1,54; глицерин - 1,47; этиловый спирт - 1,36; вода - 1,3330 (при 150С - 1,3395, при 250С - 1,3325). Поэтому при точных измерениях показателя преломления анализируемого вещества необходимо соблюдать постоянство температуры.

С увеличением длины волны показатели преломления уменьшаются. В табл. 3.6.1 приведены длины волн, при которых обычно определяют показатели преломления.

Таблица 3.6.1.

Показатели преломления воды для световых волн различной длины

Источник света

Цвет

линий

Обозначе

ния

линий

Длина волны, нм

Обо

зна

чение

n,при

T=200C

Водородная трубка

Натровая лампа

Водородная трубка

Красный

Жёлтый

Синий

C

D

F

656,3

589,3

486,1

nC

nD

nF

1,3311

1,3330

1,3371

При измерении показателя преломления необходим источник света, дакющий излучение определённой длины волны (натровые, ртутные, водородные лампы). Табличные показатели преломления приводятся для длины волны 589нм и обозначаются nD//

Количественно дисперсию оценивают как разность показателей преломления для различных длин волн, выражение 3.6.2. Разность nF - nC называют средней дисперсией.

D = nл2 - nл1 (3.6.2)

Показатель преломления определяют с помощью приборов, называемых рефрактометрами. В большинстве рефрактометров измерение ведётся при дневном свете или с помощью лампы накаливания. Эти приборы снабжаются компенсаторами дисперсии.

Определение показателя преломления вещества сводится обычно к измерению предельного угла преломления на границе «жидкость - стекло».

Допустим, что первая среда является жидкостью и необходимо измерить её показатель преломления - п1. Вторая среда представляет собой стекло призмы с показателем преломления п2. Вторая среда оптически более плотная, чем первая, а это значит, что п2 > п1 и угол преломления меньше угла падения. С увеличением угла падения увеличивается и угол преломления. Когда угол падения равен 900, луч света скользит по поверхности раздела. Если же угол падения меньше 900, то луч претерпевает преломление и попадает в зрительную трубу прибора. Этот луч называется предельным лучом, а угол преломления - предельным углом преломления. Для двух сред относительный показатель преломления может быть рассчитан по выражению, 3.6.3.

n отн = sinб /sinв = n2 /n1 (3.6.3)

Показатель преломления призмы п2 всегда известен, поэтому остаётся найти показатель преломления первой среды п1 путём измерения угла преломления в.

n1 = n2 sinв

В лабораторной практике наиболее часто используются рефрактометры типа Аббе и типа Пульфриха. Большее применение нашли рефрактометры типа Аббе: рефрактометр лабораторный универсальный РЛУ, рефрактометр ИРФ-22, рефрактометр лабораторный пищевой РПЛ и др. Оптические схемы и техника работы на этих приборах одинаковы, отличаются они несколько по конструкции.

Призма Амичи состоит из трёх склеенных призм с различными показателями преломления и различной дисперсией. Призмы рассчитаны так, что при прохождении через них цветных лучей только жёлтые лучи (линии D в спектре натрия) не меняют, не меняют своего направления. Устройство такого рода получило название дисперсионного компенсатора. Меняя положение призмы Амичи (или поворачивая одну призму относительно другой). Можно лучи разложенные измерительной призмой . собрать в один луч. Его направление будет таким же как и луча D , показатель преломления соответственно nD.

Рефрактометры типа Пульфриха более сложны в обращении и требуют специального источника света. Шкала рефрактометра градуирована в углах и нужно, производить пересчёт их на показатель преломления по специальным таблицам.

4. Электрохимические методы анализа

Электрохимические методы анализа основаны на использовании зависимости электрохимических параметров -- электропроводности, сопротивления, силы тока и др. от концентрации и природы вещества, участвующего в электрохимической реакции. Электрохимические параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно.

Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте Оствальда в Лейпциге, а в 1902 г. появились труды по применению кондуктометрического титрования. А ещё в 1830 г. А.Беккерель провёл осаждение ионов свинца и марганца на положительном электроде в процессе электролиза, тем самым, положив начало электрогравиметрии.

Сейчас электрохимические методы анализа широко применяются во всех технологических процессах, научных работах и т.д., т.к. обладают рядом достоинств. Они позволяют определить концентрацию вещества в широком интервале от 1 до 1*10-9 моль/л с высокой точностью, могут проводиться дистанционно и могут быть легко автоматизированы. Обычно электрохимические методы анализа используют для прямых измерений, основанных на зависимости -- “аналитический сигнал -- состав”, либо для индикации конечной точки титрования в титриметрии.

Следует отметить, что по первому типу работает большинство приборов автоматического контроля. Одни приборы измеряют электропроводность раствора анализируемого продукта, которая зависит от его концентрации и изменяется пропорционально изменению последней, другие -- потенциал электрода, погружённого в раствор анализируемого продукта, величина потенциала также зависит от концентрации ионов.

Методы прямой потенциометрии (ионометрии) основаны на прямом применении уравнения Нернста. Для нахождения концентрации определяемого иона по величине ЭДС цепи или потенциала соответствующего электрода.

В ионометрии сначала по стандартным растворам строят градуировочный график зависимости величины ЭДС или потенциала соответствующего электрода от концентрации определяемого иона или градуируют измерительный прибор (рН-метр, например), а затем измеряя потенциал или ЭДС анализированного раствора -- находят его концентрацию. Например, широко применяют этот метод для определения рН раствора, можно использовать также для определения концентрации ионов металлов, анионов и пр.

В настоящее время прямая потенциометрия -- ионометрия развивается как новая область физико-химических исследований, основной задачей ионометрии является разработка, изучение и применение широкого круга ион-селективных электродов, обратимых к большому числу катионов и анионов.

Ион-селективные электроды получают на основе самых разнообразных веществ: твёрдых и жидких ионитов, моно- и поликристаллов, хелатов и т.д.

Появление большого числа новых электродов значительно расширело инструментальную базу потенциометрического анализа, с помощью которого осуществляется контроль за ионным составом разнообразных сред.

В объёмном анализе широко применяется косвенная потенциометрия -- потенциометрическое титрование, при этом цветной индикатор заменяют электродом. Конечной задачей потенциометрического титрования определяемого компонента рабочим раствором является определение точки эквивалентности по изменению потенциала электрода в эквивалентной точке.

Классификация электрохимических методов анализа.

Электрохимические методы анализа основаны на электрохимических процессах, происходящих в электрохимических системах, состоящих из электродов и электролитов, находящихся в контакте.

Эти методы, основанные на использовании электрохимических свойств анализируемых систем в зависимости от изучаемого аналитического сигнала подразделяются на несколько больших групп -- кондуктометрию, потенциометрию, полярографию, электрогравиметрию и т.д.

а) кондуктометрия -- метод основан на измерении электропроводности раствора анализируемого электролита, которая зависит от концентрации электролита и изменяется пропорционально изменению концентрации.

б) потенциометрия -- метод основан на измерении потенциала электрода, погружённого в анализируемый раствор, величина потенциала зависит от концентрации ионов.

в) полярография -- метод основан на изучении зависимости между характером поляризации рабочего электрода и концентрацией раствора, в который он помещён. Полярографию можно применять как для непосредственного определения концентрации анализируемого вещества, так и для определения конечных точек при титровании.

г) Электрогравиметрия -- метод основан на выделении из раствора определяемого вещества с помощью электролиза. При этом чистый взвешенный электрод погружают в анализируемый раствор, пропускают постоянный ток, по окончании процесса электролиза электрод вновь взвешивают. По разнице взвешивания находят массу выделившегося на электроде вещества и производят расчёт.

Существуют другие методы, кроме вышеперечисленных, но все они основаны на использовании электрохимических свойств анализируемых систем.

Химические реакции, используемые в ЭХМА.

В электрохимических методах анализа могут быть использованы реакции нейтрализации, осаждения, окисления - восстановления, комплексообразования и др.

Например, в косвенной кондуктометрии (кондуктометрическое титрование) и косвенной потенциометрии (потенциометрическое титрование) очень часто используются реакции осаждения, в результате которых наблюдается изменение электропроводности в первом случае и изменение потенциала -- во втором.

Рассмотрим эти случаи.

а) Кондуктометрическое титрование.

Нитрат серебра титруют хлоридом натрия:

Ag+NO3- + Na+Cl - > vAgCl + Na+NO3-

Ионы серебра и хлора в процессе титрования удаляются из раствора, образуя осадок, ионы натрия приходят с титрантом и остаются в растворе, заменяя ионы серебра. Такая замена ионов приводит к изменению электропроводности, и характер такого изменения определяется подвижностью ионов, участвующих в этом обмене. В данном случае более подвижные ионы серебра (л0 = 61,9) уходят из раствора, а вместо них приходят менее подвижные ионы натрия (л0 = 50,1 ), что естественно, ведёт к уменьшению электропроводности раствора, которая уменьшается до полного осаждения ионов серебра, а после этого электропроводность увеличивается, что фиксируется на кондуктометрической кривой в виде излома. Чем острее угол излома, тем легче установить точку эквивалентности. Острота излома зависит от характера изменения электропроводности после достижения точки эквивалентности. При подборе реагентов в кондуктометрическом титровании следует это учитывать и подбирать таким образом, чтоб реагирующие ионы отличались своими подвижностями.

Е

V

т.э.

б) Потенциометрическое титрование.

AgNO3 + NaCl > AgClv + NaNO3

Здесь титрование нитрата серебра хлоридом натрия проводится с применением индикаторного серебряного электрода, потенциал которого зависит от концентрации ионов серебра и будет изменяться с её изменением в процессе титрования, это отразится на кривой титрования, скачок потенциала отразит точку эквивалентности.

EAg/Ag+ = Exc + 0,059?g[Ag+]

К химическим реакциям, применяемым в ЭХМА применяются почти все те требования, что и в обычном титриметрическом анализа:

скорость реакции должна быть достаточно высокой;

реакция должна протекать строго по уравнению до конца;

должны отсутствовать побочные реакции, искажающие электрические характеристики;

в потенциометрическом титровании выбор реагентов должен обеспечивать резкое изменение потенциала электрода (скачок), который зависит от разности потенциалов электрохимических систем, от величины скачка зависит точность результата;

в кондуктометрическом титровании выбор реагентов должен обеспечивать острый угол излома на кривой титрования, т.к. от этого зависит точность определения точки эквивалентности, т.е. точности результата.

4.1 Кондуктометрические методы анализа

4.1.1 Удельная и эквивалентная электропроводность. Прямая кондуктометрия

Одним из важных свойств водных растворов является их способность проводить электрический ток. Электропроводность зависит от концентрации о природы присутствующих ионов и поэтому она может быть использована для количественного определения химического состава раствора.

Хотя одно лишь измерение электропроводности не даёт возможности аналитику идентифицировать отдельные ионы, метод с успехом применяется для определения общего содержания ионов в растворе, особенно в окрашенных или мутных растворах. Метод электропроводности оказался пригодным для определения малых количеств аммиака в биологических материалах, сточных водах и др. В этом случае аммиак отгоняют из пробы и поглощают раствором борной кислоты, замеряют удельную электропроводность и сравнивают со стандартной шкалой.

Этот метод применяется для определения одного иона в присутствии минимальных количеств других.

Метод прямой кондуктрометрии основан на зависимости электропроводности от концентрации, поэтому важным этапом определения является построение градуировочного графика, используя стандартные растворы электролита.

Градуировочный график отражает зависимость электропроводности от концентрации. Определив электропроводность анализируемого раствора по градуировочному графику находят его концентрацию

Метод кондуктометрии, обладая рядом преимуществ (точность, простота) имеет ограниченное применение, если анализируемый раствор содержит примеси, т.к. электропроводность -- величина аддитивная -- наличие примесей изменяет её значение.

+ + ц1 -

ц1 - - +

x1 ц2

Na+ Cl-

x2 +

-

ц2 +

-

Методы кондуктометрии основаны на изучении зависимости между электропроводностью и концентрацией ионов в этом растворе. Электропроводность -- результат электролитической диссоциации


Подобные документы

  • Цели и задачи аналитического контроля на предприятии. Деятельность заводской лаборатории по проверке качества. Характеристика характеристика физико-химических методов анализа. Основные параметры в хроматографических и титриметрических методах анализа.

    реферат [43,4 K], добавлен 28.12.2009

  • Статистический приемочный контроль качества продукции как основной метод контроля поступающих потребителю сырья, материалов и готовых изделий. Виды планов статистического контроля партии продукции по альтернативному признаку, основные требования к ним.

    контрольная работа [21,0 K], добавлен 04.10.2010

  • Ультразвуковые методы контроля позволяют получить информацию о дефектах, расположенных на значительной глубине в различных материалах, изделиях и сварных соединениях. Физические основы ультразвуковой дефектоскопии. Классификация методов контроля.

    реферат [4,7 M], добавлен 10.01.2009

  • Понятие и показатели качества продукции. Квалиметрия: история развития, задачи, объекты. Контроль качества продукции машиностроительного предприятия и его правовая основа. Организация и методы контроля качества ремонтируемых изделий в ОАО "ММРЗ".

    дипломная работа [229,1 K], добавлен 09.04.2008

  • Аналитический контроль производства веществ и материалов. Сертификация продукции по химическому составу. Метод кислотно-основного титрования. Методы определения влаги в рыбных продуктах. Ускоренные методы сушки. Фотометрические методы исследования.

    реферат [80,1 K], добавлен 24.11.2012

  • Дефекты и контроль качества сварных соединений. Общие сведения и организация контроля качества. Разрушающие методы контроля сварных соединений. Механические испытания на твердость. Методы Виккерса и Роквелла как методы измерения твердости металла.

    контрольная работа [570,8 K], добавлен 25.09.2011

  • Организационная структура испытательного центра "Ярославский государственный институт качества сырья и пищевой продукции". Методы контроля изготовления пищевой продукции. Принцип работы приборов "Анализатор качества молока" и "Лабораторный иономер".

    курсовая работа [661,6 K], добавлен 30.09.2014

  • Влияние внедрения автоматизированного контроля технологического процесса производства вареных колбас на качество продукции и надежность работы технологических линий. Подбор манометра для измерения избыточного давления и датчиков контроля температуры.

    доклад [12,6 K], добавлен 04.10.2015

  • Взаимосвязь технологических и организационно-управленческих структур. Понятие о химико-технологических процессах, принципы классификации. Перспективы развития и особенности экономической оценки химико-технологических процессов. Специальные методы литья.

    контрольная работа [50,0 K], добавлен 10.07.2010

  • Понятие и методики неразрушающего контроля качества, его значение в производстве изделий и используемый инструментарий. Разновидности дефектов металлов, их классификация и возможные последствия. Неразрушающий контроль качества методами дефектоскопии.

    контрольная работа [155,9 K], добавлен 29.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.