Методы химического анализа

Теоретические основы аналитического контроля качества продукции. Автоматизация аналитического контроля продукции химико-технологических производств. Оптические методы химических исследований. Электрохимические методы анализа. Хроматографический метод.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 30.08.2010
Размер файла 271,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

NaCl Na+ + Cl -

Под действием электрического тока образовавшиеся ионы принимают направленное движение.

В поле электрического тока движущиеся ионы начинают испытывать тормозящее действие со стороны молекул растворителя и со стороны противоположно заряженных ионов.

Иондипольное взаимодействие -- релаксационный эффект (ц), взаимодействие противоположно заряженных ионов -- электрофоретический (х). Результатом действия этих двух эффектов является сопротивление раствора прохождению электрического тока.

Растворы электролита являются проводниками П рода -- перенос электричества осуществляется ионами, которые под действием электрического тока приобретают направление и, как проводники, растворы обладают сопротивлением -- R.

Величина, обратная этому сопротивлению R, называется электропроводностью.

1 R -- сопротивление - ом

W = ---- W -- электропроводность - ом -1

R

Сопротивление раствора электролита пропорционально растоянию между погружёнными в него электродами - ? и обратно пропорционально их площади - S

? ? -- расстояние между электродами (см)

R = с ---- S -- площадь электродов (см2)

S с -- коэффициент пропорциональности

Если ? = 1 см

S = 1 cм2, то R = с

с -- удельное сопротивление столба жидкости высотой 1 см и площадью 1 см2, т.е. сопротивление 1 см3.

Удельная электропроводность Нкаппа величина, обратная удельному сопротивлению

?

Н = ----

с

Электропроводность раствора определяется, в основном, подвижностью (скоростью) ионов электролита и количеством переносимых ими зарядов, зависит от температуры и природы растворителя.

б -- степень диссоциации электролита

x = б · c · F (z+u+ + z -u -) с -- концентрация электролита экв/л

u+u - -- скорости движения ионов F -- число Фарадея

z+z - -- заряды катиона и аниона ( при напряжённости электрического поля 1 в/см)

Удобнее пользоваться эквивалентной электропроводностью (она отнесена к количеству вещества).

л -- эквивалентная электропроводность -- электропроводность объёма раствора, помещённого между двумя параллельными электродами, расположенными на расстоянии 1 см, который содержит 1 грамм-эвивалент растворённого вещества.

с -- концентрация электролита

-- количество г/экв в 1 см3

Удельная и эквивалентная электропроводность связаны соотношением:

л =

Измеряемым аналитическим сигналом в кондуктометрии является электропроводность, по мере концентрации раствора электролита -- увеличивается число ионов-переносчиков электрического тока, и удельная электропроводность раствора увеличивается.

Однако, после определённого максимального значения удельная электропроводность начинает уменьшаться (у сильных электролитов увеличивается тормозящее действие со стороны молекул растворителя и со стороны противоположно заряженных ионов, а у слабых электролитов уменьшается степень их диссоциации).

Электропроводность бесконечно разбавленного раствора л? определяется подвижностью ионов л?- и л?+ (без учёта тормозящего эффекта -- релаксационного и электрофоретического).

Кондуктометрический метод подразделяется на прямую и косвенную кондуктометрию, к косвенной кондуктометрии относится кондуктометрическое титрование, в том числе и высокочастотное.

а) Прямая кондуктометрия -- метод анализа, в основе которого лежит возможность определения концентрации раствора и электропроводности, т.к. между этими величинами существует определённая зависимость.

Прямая кондуктометрия -- определение электропроводности -- один из методов контроля вод, грунта, пищевых продуктов и т.д.

Этот метод лежит в основе многих приборов химического контроля.

При кондуктометрическом определении газов СО2, СО, NH3, H2S и др. -- измерению электропроводности предшествует химическая реакция. При определении СО2 электропроводность щелочи измеряется после поглощения им СО2.

Используя серию стандартных растворов -- строят градуировочный график зависимости (x, л -- c), затем измеряют хх или лх анализируемого раствора и по градуировочному графику определяют его концентрацию -- сх

4.1.2 Кондуктометрическое титрование

Основано на использовании химической реакции в результате которой происходит заметное изменение электропроводности раствора, при этом могут быть использованы химические реакции всех типов -- нейтрализации, осаждения, комплексообразования, окисления-восстановления и т.д.

По ходу титрования замеряют электропроводность после добавления каждой порции рабочего раствора. Зависимость электропроводности анализируемого раствора изображают графически и получают кривую кондуктометрического титрования, имеющую излом, соответствующий точке эквивалентности, по точке эквивалентности находят объём раствора, пошедший на титрование, провести расчёт.

Qв-ва = Т · Vэкв. или Q =

Н

т.э.

Vэкв. V

При кондуктометрическом титровании обязательно учитывать эффект разбавления, чтоб получить чёткий излом на кривой титрования -- исследуемый раствор в электролитической ячейке должен быть разбавленным, а рабочий раствор в бюретке должен быть концентрированным, в соотношении 1 : 10.

При кондуктометрическом титровании для получения кривой титрования с резким изломом необходимо правильно подобрать рабочий раствор для титрования, растворитель для анализируемого вещества, правильно соотнести концентрации исследуемого раствора в электролитической ячейке и рабочего -- в микробюретке.

Главное достоинство кондуктометрического титрования

возможность фиксировать эквивалентную точку в окрашенных и мутных растворах.

позволяет проводить анализы автоматически, дистанционно.

а) Графики кривых кондуктометрического титрования.

1. Метод нейтрализации:

а) H+Cl - + K+OH - > KCl + H2O

лH+ = 350

лOH- = 19,8

лCl- = 7,6

лK+ = 63,9

Более подвижный ион Н+ замещается менее подвижным ионом К+ после т.э. -- появляется избыток ОН -, более подвижный чем К+.

л

т.э.

Vэкв. V

б) CH3COOH + KOH > KCH3COO + H2O

лH+ = 350

лOH- = 19,8

лCH3COO- = 40,9

лK+ = 63,9

Слабая СН3СООН -- плохо диссоциируется, образование более сильного электролита СН3СООН ведёт к повышению электропроводности, резко увеличивающейся при изгибе К+ и ОН -

л

т.э. V

в) СН3СООН + NH4OH > NH4CH3COO + H2O

лH+ = 350

лCH3COO- = 40,9

лNH4- =73,5

лOH+ = 19,8

Вначале электропроводность низкая, обусловленная слабой диссоциацией СН3СООН, затем немного увеличивается за счёт образования сильного электролита NH4CH3COO после точки эквивалентности электропроводность остаётся постоянной, это обусловлено наличием сильного электролита NH4CH3COO, концентрация которого const.

2 Метод осаждения.

а) Ba(NO3) + Na2SO4 > vBaSO4 + 2NaNO3

лNa+ = 50,1

лBa+ = 63,6

лNO3- = 71,4

лSO4- = 80,0

Вначале электропроводность уменьшается, вследствие замены более подвижного Ва2+ на менее подвижный Na+, после достижения т.э. -- электропроводность увеличивается, за счёт появления избыточного количества сильного электролита Na2SO4/

л

т.э. V

б) 2AgNO3 + BaCl2 > 2AgClv + Ba(NO3)2

лBa2+ = 63,6

лAg+ = 6,2

лNO3- = 71,4

лCl- = 76,0

Ионы Ag+ и Ва2+ обладают равноценной подвижностью, поэтому замещение Ag+ на Ва2+ не влияет на электропроводность, после точки эквивалентности избытка сильного электролита ВаCl2 -- вызывает увеличение электропроводности -- скачок.

л

т.э. V

При кондуктометрическом титровании после каждой добавленной порции рабочего раствора измеряют электропроводность (сопротивление).

= с (удельная электропроводность величина, обратная сопротивлению)

Сопротивление раствора электролита:

R = с , отсюда x = *

Если бы электропроводность наблюдалась только в объёме между электродами, то для определения удельной электропроводности можно было бы использовать расстояние между электродами - ? и их площадь - S.

Но в электролитической ячейке -- ток проводит весь раствор -- силовые линии находятся и между электродами и вокруг них, площадь электродов изменяется в процессе платинирования.

Поэтому удельную электропроводность выражают зависимостью:

x = A

А -- константа сосуда (см-1), зависящая от площади электродов и расстояния между ними, а также от формы сосуда и объёма раствора, проводящего ток ( А = ).

Электропроводность раствора W -- величина обратная сопротивлению R

W = , и поэтому x = A * W

Для определения удельной электропроводности нужно измеренную электропроводность умножить на константу сосуда, т.к. константа сосуда величина постоянная -- (одинаковая во всех измерениях) -- то для построения кондуктометрической кривой нет необходимости пересчитывать электропроводность раствора W -- в удельную электропроводность х, т.к. эти величины пропорциональны друг другу.

Основным требованием предъявляемым к электролитическим ячейкам, является постоянство константы сосуда при неизменном объёме раствора в области тех сопротивлений, которые измеряются в данной ячейке, поэтому для каждой электролитической ячейки, используемой для аналитических целей, предварительно проверяют постоянство константы сосуда.

Для определения константы сосуда измеряют сопротивление стандартного раствора с известной удельной электропроводностью, в качестве стандартных растворов применяют растворы KCl, для которых электропроводность определена с высокой точностью.

Измерение сопротивления стандартных растворов KCl 0,1 н и 0,01 н проводят при постоянном объёме раствора.

4.1.3 Порядок проведения кондуктометрического титрования

Собрать установку для кондуктометрического титрования, которая состоит из электролитической ячейки и микробюретки, установленной над сосудом для измерения электропроводности (сопротивления).

Определить константу сосуда. Для этого приготовить 0,1 н и 0,01 н растворы KCl. В начале определить сопротивление 25 мл 0,01 н раствора KCl, а затем 25 мл 0,1 н раствора KCl с помощью моста Уинстона. Константу сосуда вычисляют по уравнению:

А = х * R

где: х -- удельная электропроводность раствора взятой нормальности

R -- сопротивление раствора в ячейке, ом

Значения констант сосуда, установленные по 0,01 н раствору KСl должны быть близкими (6,16 и 6,07 -- соответственно и практически не изменяются при увеличении объёма в ячейке).

Полумикробюретку заполнить рабочим раствором и установить над сосудом для титрования.

В электролитическую ячейку поместить 25 мл анализируемого раствора и определить сопротивление с помощью мостика Уинстона. Затем в ячейку добавить титрант порциями по 0,02 мл и после добавления каждой порции титранта раствор перемешивают и измеряют сопротивление -- три раза и берут средний результат. По результатам -- строят кривую титрования, по оси ординат -- электропроводность раствора, отмечают точку эквивалентности и определяют объём титранта, пошедший на реакцию с определённым веществом.

Н, л

т.э. V

Количество определяемого вещества находят по формуле:

Qв-ва = Т · Vэкв или

Q =

Электропроводность (сопротивление) измеряют с помощью установки, включающей мост Уинстона.

Сопротивление раствора электролита определяют путём сравнения с эталонным сопротивлением.

R1

G R2

С помощью скользящего контакта G подбирают такое соотношение плеч реохорда R1 и R2, чтоб в диагонали моста -- ток отсутствовал, тогда Rя

= R Rя -- сопротивление ячейки

R -- магазин сопротивлений

R1 R2 -- переменные сопротивления, плечи реохорда

G -- скользящий контакт

4.1.4 Установка для выполнения кондуктометрического титрования

При кондуктометрическом титровании в процессе анализа неоднократно регистрируется аналитический сигнал -- электропроводность (или сопротивление), на основании этих измерений проводятся расчёты.

Для этих целей служат специальные электролитические ячейки -- сосуды с вмонтированными электродами, конструкция таких ячеек должна соответствовать интервалу измеряемых сопротивлений.

Расстояние между электродами и их поверхность выбирают в зависимости от сопротивления раствора: чем выше измеряемое сопротивление, тем больше должна быть площадь электродов и меньше расстояние между ними. С учётом этого и выбирают электролитическую ячейку.

Для каждой ячейки имеется характеристика -- константа сосуда, которая должна быть постоянной при неизменном объёме раствора в области тех сопротивлений, которые измеряются в данной ячейке.

Установка для кондуктометрического титрования.

2

+

Rx н.г.

-- 4

1 10000 3

1000

10 100

5

Расходный мост

Бюретка

Платиновые электроды

Стакан для исследуемого раствора

Магнитная мешалка

4.1.5 Порядок выполнения титрования.

В стакан для титрования помещают аликвоту исследуемого раствора и добавляют воду, чтобы электроды были полностью покрыты, м/мешалку и измеряют электропроводность, затем прибавляют рабочий раствор порциями, измеряя электропроводность после каждой порции. Следует провести 4-5 отсчётов электропроводности до точки эквивалентности и 4-5 отсчётов после точки эквивалентности. По полученным данным построить график зависимости удельной электропроводности от объёма израсходованного реактива.

Н

Т.э. V

4.2 Потенциометрические методы анализа

4.2.1 Основы метода

Потенциометрические методы анализа основаны на том, что потенциал ряда электродов является функцией активности (концентрацией), поэтому измеряя электрохимический потенциал электрода, погружаемого в анализируемый раствор -- определяют концентрацию испытуемого вещества.

Потенциал электрода в растворе зависит от природы металла и от концентрации раствора, в который помещён электрод, эта зависимость выражается уравнением Нернста:

Еме. = Е0ме. + · ?g[Me+n] (1)

R -- газовая постоянная -- 8,314 Дж.

T -- абсолютная температура

F -- число Фарадея 96500

n -- заряд иона

2,3 -- коэффициент перевода ?n > ?g

Уравнение (1) можно представить в виде:

Еме. = Е0ме. + · ?g[Men+]

Е0 -- нормальный, или стандартный потенциал данной окислительно-восстановительной системы, т.е. потенциал, который возникает в том случае, когда активности всех компонентов, участвующих в окислительно-восстановительном процессе, равны единице.

Окислительно-восстановительная система, определяющая потенциал электрода, может находиться в растворе, в который электрод помещают, но может возникать при погружении электрода в раствор.

В первом случае электродами являются инертные металлы (платина, золото и др.), которые не принимают участие в реакции, а служат лишь передатчиками электронов между компонентами окислительно-восстановительной системы, которые обуславливают величину потенциала электрода.

Таким примером может служить платина, погружённая в раствор, содержащий ионы Fe2+ и Fe3+ . В этом случае на электроде протекает реакция:

_

Fe3+ + e > Fe2+

Потенциал которой имеет вид:

Е = Е0 + 0,059 ?g[Fe3+]*[Fe2+]

Если в окислительно-восстановительной реакции участвуют ионы водорода, то потенциал электрода зависит также от величины рН раствора.

Хингидронный электрод является чувствительным на [H+]. Основной компонент электрода -- эквимолекулярное соединение хинона и гидрохинона.

О ОН

С6Н4О2 С6Н4(ОН)2-- зелёные кристаллы плохо растворимые в воде

Попадая в воду, распадается на хинон и гидрохинон:

Гидрохинон диссоциирует в воде

С6Н4(ОН)2 С6Н4О22- + 2Н+

_

С6Н4О22- С6Н4О2 + 2е

--------------------------_----

С6Н4(ОН)2 С6Н4О2 + 2е

Происходит реакция окисления с участием [H+]

Ехэ = Е0хэ + ?g = Е0хэ + 0,059?g

[Хиноны] и [Гидрохиноны] можно сократить, по условию они равны -- смесь эквимолекулярна, отсюда:

Ехэ = Е0хэ + ?g[Н+]2 = Ехэ + * 2рН = Е0хэ - 0,059рН

Ехэ = Е0хэ - 0,059рН

Устройство хингидронного электрода очень просто -- на дне стеклянного сосуда кристаллы хингидрона и туда же опущена платиновая пластинка -- подвод и отвод з.

Pt

Исслед.раствор

Кристаллы хингидрона

Достоинство Ї простота, устойчивость к загрязнению, возможность использования в неводных средах.

Недостаток Ї измерения можно производить до рН не более 8 и в отсутствии окисл. и восст.

4.2.2 Электроды, применяемые в потенциометрических методах анализа

Во всех потенциометрических методах анализа используют гальванические элементы, включающие два электрода, помещённые в один и тот же раствор и измеряют ЭДС полученного гальванического элемента.

Электрод, потенциал которого зависит от концентрации (активности) определяемого иона в растворе, называется индикаторным. Индикаторные электроды могут быть электродами I и П рода.

Электроды I рода обратимы относительно ионов одного вида (металлическая пластина, опущенная в раствор собственной соли Cu/CuSO4, Ni/NiSO4).

ЕCu0/Cu2+ = E0Cu0/Cu2+ + ?g[Cu2+]

Часто используют электроды из серебра, ртути, кадмия, меди и некоторых других металлов. Хром, кобальт и ряд других не дают воспроизводимых результатов и электроды из этих металлов не применяются.

Для измерения окислительно-восстановительного потенциала системы применяются электроды из благородных металлов Ї Pt, Au, Ir или графита.

К электродам I рода можно отнести водородный электрод, потенциал которого зависит от рН раствора.

Е = Е0 + ?g[H]

Е = Е0 + рН

Наряду с электродами I рода существуют электроды П рода, потенциал которых определяется концентрацией соответствующих анионов. Такие электроды представляют собой пластину металла, покрытую труднорастворимой солью этого металла и опущенная в раствор соли, содержащей одноимённый ион.

К электродам П рода относятся хлорсеребряный, каломельный и др. Хлорсеребряный электрод изготавливают из серебряной проволоки, которую покрывают тонким слоем хлорида серебра, он помещён в раствор соли KCl.

Хлорсеребряный электрод: Ag¦AgCl¦KCl

EАg/Ag+ = ЕХ.С. + 0,059?g[Ag+] = EХ.С. + 0,059?g

Для измерения потенциала индикаторного электрода в анализируемый раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Этот второй электрод называют электродом сравнения.

В качестве индикаторных электродов используют электроды двух типов.

Электродообменные, на межфазных границах которого протекают реакции с участием электронов.

Ионообменные, на межфазных границах которого протекают реакции сопровождающиеся обменом ионов. Такие электроды называют ион-селективными.

А). Ион-селективные электроды.

Ион-селективные электроды широко внедряются в практику химического анализа, применяются для определения самых разнообразных веществ. Они подразделяются на несколько групп:

а) Стеклянные электроды

б) Твёрдые электроды с гомогенной или гетерогенной системой.

в) Жидкостные электроды ( на основе ионных ассоциатов, хелатов металлов, нейтральных лигандов и тд.)

г) Газовые электроды

д) Электроды для измерения активности (концентрации) биологических веществ.

Ион-селективные электроды представляют собой электрохимические полуэлементы, у которых разность потенциалов на границе раздела фаз Электрод Ї Электролит зависит от концентрации (активности) определяемого иона в растворе. Электродом обычно является твёрдая или жидкая мембрана, способная обмениваться ионами с анализируемым раствором.

Если ионы в раствор электролита проникают из мембраны, то её поверхность приобретает заряд, противоположный заряду перешедших в раствор ионов и на границе раздела фаз возникает потенциал, величина которого зависит от концентрации (активности) данных ионов в растворе.

Если мембрана разделяет два раствора с различной активностью, то потенциал определяется уравнением Нернста.

Е = Е0 + 0,059?g

а1 Ї активность (концентрация) ионов в первом растворе

а11 Ї активность (концентрация) ионов во втором растворе

Обычно в одном из растворов активность (концентрацию) сохраняют постоянной (чаще внутри мембраны).

Если а11 Ї const, тогда:

Е = Е0 + 0,59 ?gа1

Т.е. потенциал индикаторного ион-селективного электрода зависит только от активности ионов первого раствора.

Ион-селективные электроды находят широкое применение в практике физико-химического анализа.

С помощью их можно быстро провести анализ по определению многих ионов, даже тех, которые другими методами не определяются.

Существуют ион-селективные электроды для определения К+, Na+, Ba2+, Ca2+, Cu2+, NO3-, SO42-, PO43-, CN -, SCN -.

Главным достоинством ион-селективных электродов является высокая избирательность определения.

Чувствительной частью ион-селективного электрода является мембрана, которая разделяет два раствора, находящихся в контакте, на внутренний и внешний, поэтому электроды называются мембранными.

Существуют различные классификации ион-селективных электродов, но наиболее удобна классификация по виду мембраны:

1 Электроды с твёрдой мембраной.

а) Стеклянные

б) С кристаллической мембраной

в) С плёночной мембраной

2. Электроды с жидкой мембраной.

3. Специальные электроды Ї газовые, ферментативные и др.

В потенциометрии в качестве индикаторных обычно применяют мембранные (ион-селективные) электроды. Через мембрану возможно перемещение ионов одного вида, активность ионов внутри мембраны постоянна.

Среди ион-селективных электродов наибольшее распространение получил стеклянный электрод, предназначенный для измерения рН. Устройство его довольно простое Ї включает стеклянную трубку с шариком на конце. Шарик изготовлен из специального стекла, обладающего повышенной электропроводностью и заполнен стандартным раствором Ї 0,1 М раствором HCl с добавками KCl или NaCl. Токоотводом служит хлор-серебряный электрод Ї серебряная проволока, покрытая хлоридом серебра, к которой припаян изолированный провод.

Шарик имеет толщину стенок 0,06-0,1 мм, изготовлен из стекла состава - 64% SiO2

28% Na2O

8% MgO

Внутри стеклянной трубки помещена серебряная проволочка, покрытая труднорастворимой солью серебра AgCl, защищенная стеклянным кожухом.

Ag, AgCl | HCl(0,1 M) || стекло || исследуемый раствор.

Перед применение стеклянного электрода для определения рН Ї его вымачивают в 0,1 М растворе HCl. В результате этой операции происходит обмен ионов.

Ионы водорода из раствора кислоты обмениваются на ионы натрия в стекле шарика и на границе стекло кислота устанавливается равновесие:

Н+ Na+

В таком состоянии электрод готов к работе.

Потенциал стеклянного электрода обусловлен обменом ионов щелочных металлов, находящихся в стекле с ионами водорода раствора.

Концентрация ионов водорода на внутренней поверхности стеклянной мембраны находится в равновесии с внутренним раствором HCl и на границе мембрана Ї внутренний раствор устанавливается равновесный потенциал (Е1).

При погружении стеклянного электрода в исследуемый раствор ионы водорода начинают перемещаться через стекло шарика (мембрану) из раствора с большой активностью, при этом на границе мембрана Ї внешний раствор возникает равновесный потенциал (Е2).

Разность этих потенциалов даёт общий потенциал стеклянного электрода:

Ест. = Е1 + Е2

Электродная реакция на стеклянном электроде сводится к обмену ионами водорода между раствором и стеклом:

Н+(р-р) Н+(стекло)

Т.е. она не связана с переходом электронов. Ионы водорода на поверхности внешней стороны мембраны находятся в равновесии с ионами водорода в исследуемом растворе и на границе раздела возникает потенциал.

Е1 = Е10 + ?n

Где: ан+(х) Ї активность ионов водорода в исследуемом растворе.

а` н+ (1) Ї активность ионов водорода на внешней поверхности мембраны.

Аналогично на границе раздела внутренней поверхности мембраны возникает потенциал:

Е2 = Е20 + ?n

Где: ан+(2) Ї активность ионов водорода во внутреннем растворе

а` н+ (2) Ї активность ионов водорода на внутренней поверхности мембраны.

Суммарный потенциал стеклянного электрода:

Ест = Е1 - Е2 = Е10 - Е20 + ?n

При постоянных значениях:

а` н+ (1) Ї активность ионов водорода на внешней поверхности мембраны

а` н+ (2) Ї активность ионов водорода на внутренней поверхности мембраны

ан+(2) Ї активность ионов водорода во внутреннем растворе

Уравнение принимает вид:

Ест = const + ?n ан+(х)

Т.е. потенциал мембраны характеризует рН исследуемого раствора.

Или Ест = const + 0,059?gСн+

Величина const зависит от природы вспомогательного электрода сравнения, природы внутренного раствора и др.

При определении рН, с использованием стеклянного электрода в паре с каломельным Ї измеряют ЭДС цепи:

Hg, Hg2Cl2¦KCl¦ ан+(х)¦стекло¦HCl¦AgCl, Ag

ЭДС цепи Е = Е1 - Е2

Е1 = Е0 Hg2Cl2/Hg - 0,059?g aCl-(1) - 0,059?g aн+(х)

Е2 = Е0 АgCl/Аg - 0,059?g aCl-(2) - 0,059?g aн+(cт)

Е = [Е0 Hg2Cl2/Hg - Е0 АgCl/Аg + 0,059?g + 0,059?g H+(ст) - 0,059?g aH+|(x) = Eст - 0,059?п ан+(х)

Стеклянные электроды обладают рядом достоинств:

а) Широкий диапазон значений рН (от 0 до 13), который можно измерять стеклянным электродом.

б) Быстрота достижения равновесия и простота работы.

в) Возможность использовать электрод в присутствии окислителей, восстановителей, коллоидных растворов и пр.

Одним из недостатков стеклянного электрода является его хрупкость.

Другим недостатком Ї является искажение результатов, если рН внутреннего раствора близок к рН исследуемого.

Сухие электроды очень слабо реагируют на изменение рН анализируемого раствора, поэтому перед началом измерений сухие электроды необходимо выдержать в соответствующем буферном растворе, после этого провести калибровку электрода, сверяя показания потенциала на приборе с известной рН. Выпускаемые стеклянные электроды для измерения рН (ЭСЛ - 11Г -0,5, ЭСЛ - 41Г - 0,4, ЭСЛ - 63 - 0,7, ЭСЛ - 43 - 07) пригодны для измерения рН в интервале от 0 до 14. Выпускаются стеклянные электроды для измерения активности щелочных металлов, например, ЭСNА - 51 - 7 для ионов Na+ и ЭСЛ - 91 - 07 Ї для ионов К+.

К электродам с твёрдой мембраной относятся электроды с кристаллической мембраной, когда в качестве мембраны используют моно - или поликристаллы труднорастворимых в воде солей с ионным характером.

1 Ї мембрана

2 Ї корпус электрода

6 3 Ї внутренний раствор (0,1 М р-р

определяемого иона и KCl)

4 Ї внутренний полуэлемент Ag/AgCl

5 5 Ї место припоя

4 6 Ї экранированный провод

3

2

1

Самый чувствительный участок электрода Ї мембрана. Перенос заряда в кристаллической мембране происходит за счёт дефектов кристаллической решётки Ї ионы перемещаются в пустующие узлы решётки.

Если мембрана неоднородна, гетерогенна Ї в ней активный компонент Ї кристалл внедрён в инертный связующий материал Ї полиэтилен, эпоксидную смолу и т.д.

Твёрдым ион-селективным электродом является фтористый электрод, в котором монокристалл LaF3 является мембраной, чувствительность такого электрода позволяет измерять концентрацию F - от 10 -6 до 1 м/л.

Ион-селективный электрод с мембраной из сульфида серебра для измерения ионов Ag+ и S2-. Электроды на основе сульфида серебра с добавкой соответствующего галогенида серебра позволяют измерять Cl -, J -, Br -, CN - и др. Введение в сульфид серебра сульфидов других металлов позволяет получить электрод, чувствительный к ионам металлов, внесённых со вторым сульфидом (Cd2+, Pb2+, Cu2+).

Широкое применение получают твёрдые электроды с плёночной мембраной. В таких мембранах тонкоизмельчённое активное вещество Ї кристаллы Ї заключено в неэлектропроводную матрицу, изготовленную из полистирола, агар-агара, каучука, полиэтилена, эпоксидной смолы и др. В качестве активного вещества применяют соли Ї галогениды, сульфиты, оксалаты и др.

Конструкция электродов с плёночной мембраной аналогична конструкции электродов с кристаллической мембраной, только вместо мембраны вклеена матрица, а внутрь электрода залит раствор сравнения 0,1 м KCl и 0,1м соли измеряемого иона (для нитрат-селективного Ї нитрат калия, для фторид-селективного Ї фторид натрия и т.д.).

Перед работой плёночные пластифицированные электроды вымачивают в анализируемом растворе в течение суток. К электродам с плёночной мембраной относится нитрат-селективный электрод Ї ЭМ - NO3 - 01.

В настоящее время широко применяются электроды с жидкой мембраной. В электродах с жидкой мембраной раствор сравнения отделён от анализируемого тонким слоем органической жидкости, содержащей жидкий ионит, не смешивающийся с водой, но селективно реагирующий с определяемым ионом. Жидкие мембраны готовят из жидких или твёрдых ионитов или их растворов в подходящих органических растворителях, не смешивающихся с водой и могут быть катионными, анионными и нейтральными.

Существуют катионные жидкие мембраны на Са2+, Ва2+, Zn2+, Pb2+, Cu2+, Sb3+, изготовленные на основе высокомолекулярных кислот и из волей.

Анионные жидкие мембраны изготавливают на основе аминов и четвертичных аммониевых оснований.

Нейтральные жидкие мембраны могут быть изготовлены на основе органических соединений, способных связывать катионы щелочных и щелочноземельных металлов.

В качестве растворителей обычно используют эфиры, например, октиловый или дециловый эфир фосфорной кислоты, дибутилфосфат и др. в электродах этого типа возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения между жидкой и органической фазами. Ионная селективность достигается за счёт различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны.

Потенциал-образующими ионами являются катионы или анионы ионных ассоциатив, т.е. электрод с катионно-анионным ассоциатом чувствителен и к катионам и к анионам, входящим в состав ассоциата. При применении мембраны для определения анионов селективность анионочувствительных электродов распределяется таким образом:

ClO4- > SCN - > J - > BF4- > NO3- > Br - > Cl - >J -

На основании этого ряда можно установить возможность определения одного из ионов в присутствии других. Например, открытию нитрат ионов (NO3-) мешают все анионы, стоящие в этом ряду влево от него и не мешают те, которые расположены вправо от него.

Устройство ион-селективного электрода с жидкостной мембраной довольно простое.

Электрод с жидкостной мембраной.

В резервуаре 2 находится ионочувствительная жидкость, органического ионита, пропитывающая мембрану. Органический ионит имеет основные, кислотные или хелатообразующие функциональные группы, растворяется в подходящем растворителе, которые не смешиваются с водой.

Для определения кальция (Са2+) в качестве жидкого ионита берут кальциевую соль алкилфосфорной кислоты RСu(O)2PO, растворённую в диалкилфенилфосфонате (R2C6H5PO) или аналогичном компоненте. В качестве раствора сравнения внутреннего серебряного электрода применяют CaCl2, в котором [Ca2+] постоянно и потенциал электрода будет зависеть только от концентрации иона Са2+ в анализируемом растворе. При этом с каждой стороны ион-селективной мембраны устанавливается равновесие.

СаR2(орг -) - 2R(орг) + Са2+воды и Е = Е0мембр. 0 0,0291 ?g[Ca2+]

Такие электроды имеют чувствительность 10 -5 - 1 м/л в области рН 6,0 до 11,0. В практике применяют ион-селективные мембранные электроды на ионы К+, Na+, NH4+ и некоторые другие.

Электроды с газовой мембраной позволяют определить содержание газов при анализе почвы, морской и речной воды, биологических жидкостей, промышленных газов, выхлопов и т.д.

Действие электродов основано на взаимодействии газов с водой и образованием ионов:

CO2 + H2O - HCO3- + H+

SO2 + H2O - HSO3- + H+

H2S + H2O - HS - + H+

NH3 + H2O - NH4+ + OH -

Анализ сводится к определению образовавшихся в растворе ионов Н+ или ОН -, определению рН. Для работы собирают гальванический элемент, где в качестве индикаторного электрода стеклянный электрод, а в качестве электрода сравнения Ї хлорсеребряный. Оба электрода помещают в жидкость с растворённым газом и определяют ЭДС элемента.

Сосуд, в котором происходит растворение газа имеет газопроницаемую мембрану, проходя через неё, газ растворяется и с помощью электродов определяется концентрация обращающихся ионов в растворе.

Ион-селективные электроды служат в качестве индикаторных и они отличаются большой чувствительностью. Предел обнаружения ионов с их помощью 10 -5 - 10 -7 м/л (иногда до 10 -19 м/л), минимальное количество пробы для одного определения 0,05 - 1 мл. Они отличаются высокой селективностью, особенно мембранные электроды.

В). Коэффициент селективности

Мембранные электроды проявляют селективность по отношению к ионам одного вида, концентрацию которых можно измерить в присутствии других ионов, не входящих в состав мембраны. Важной характеристикой ион-селективных электродов является его коэффициент селективности, который показывает, во сколько раз электрод более чувствителен к данным ионам, чем к посторонним (мешающим). Например, коэффициент селективности натриевого электрода по отношению к ионам калия составляет 1000, т.е КсNa+/K+ = 1000, это значит, что данный электрод в 1000 раз чувствительнее к ионам Na, и если он имеет потенциал Е при [Na+] = 10 -3моль/л, то для достижения такого же потенциала потребуется [K+] = 1 моль/л. мембранные электроды проявляют селективность по отношению к ионам одного вида, концентрацию которых можно измерять в присутствии посторонних ионов, не входящих в состав мембраны. Селективность мембраны в этом случае зависит от способности ионов мембраны обмениваться с посторонними ионами раствора. Например, если в мембране содержатся иона Са2+, а в растворе кроме них ещё и посторонние Sr2+, то селективность мембраны по отношению с Са2+ характеризуется степенью возможности обмена:

Sr2+ + Ca2+ > Sr2+ + Ca2+

Раствор мембрана мембрана раствор

Кр = >

Найдём Кр, чем больше Кр, т.е. чем больше равновесие сдвинуто вправо, тем меньше селективность.

Селективность зависит также от соотношения подвижностей Sr2+ и Са2+ в мембране и уменьшается с увеличением этого соотношения.

ЫСа2

КСа2/Sr2+ = ------ = Кр

ЫSr2+

ЫСа2 и ЫSr2+ -- подвижность ионов Са2+ и Sr2+ в мембране

Кр -- константа равновесия реакции обмена в мембране.

Это соотношение представляет коэффициент селективности иона Са2+ по отношению к иона Sr2+, который является количественной мерой чувствительности электрода к двум ионам. Потенциал ион-селективного электрода зависит от концентрации определяемого иона в растворе, и он всегда играет роль индикаторного электрода.

4.2.3 Прямая потенциометрия - ионометрия.

В потенциометрических методах анализа применяют гальванический элемент, состоящих из двух электродов. Один электрод является индикаторным, потенциал его зависит от концентрации (активности) определяемого иона. В качестве индикаторных электродов можно применять ион-селективные электроды, чувствительные на определяемый ион, с мембраной разного вида.

Для измерения потенциала индикаторного электрода в анализируемый раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемого иона и называется электродом сравнения. В качестве электродов сравнения можно применить нормальный водородный электрод, потенциал которого равен нулю при н.у., а также электроды П рода -- хлорсеребряный, каломельный и ряд других. Основным требованием к электродам сравнения является постоянство его потенциала, простота изготовления. Постоянство потенциала обеспечивается, если поддерживать постоянной концентрацию внутреннего раствора. Хлорсеребряный электрод (Ag, AgCl/KCl) чаще других применим в качестве электрода сравнения. Его можно применять в паре со стеклянным электродом при определении рН раствора, а также в паре с некоторыми ион-селективными электродами.

Электрохимическая схема пары стеклянный электрод -- хлор-серебряный

Ag | AgCl | HCl(0,1) стекло||исслед. р-р || KCl | AgCl | Ag

Стеклянный электрод насыщенный хлор-серебряный

электрод

Во всех проводимых определениях с использованием методов прямой потенциометрии-ионометрии используется зависимость потенциала индикаторного электрода (обычно ион-селективного) от активности или концентрации определяемого компонента, используя для расчётов метод градуировочного графика, метод добавок, молярного свойства и т.д.

Применение ион-селективных электродов позволяет быстро решать многие аналитические задачи и даёт возможность проводить многочисленные задачи на основе составленных матриц. Например, используя ион-селективный электрод (нитрат-селективный) можно быстро и точно определить содержание нитрат-иона в технических, биологических, экологических и других объектах. (Определение нитрат-иона другими методами представляет сложную аналитическую задачу, трудоёмкую, состоящую из нескольких стадий).

Используя ионометрию, составляют гальванический элемент из нитрат-селективного пластифицированного электрода (с плёночной мембраной) и хлорсеребряного электрода сравнения.

По точной навеске методом разбавления готовят серию стандартных растворов KNO3 (или NaNO3), при этом стандартные растворы готовят на фоне 1 м K2SO4, чтобы иметь постоянную ионную силу раствора. Погружают электроды в стандартные растворы (от разбавленного к концентрированному) и регистрируют зависимость ЭДС гальванического элемента от концентрации нитрат-иона, строят калибровочный график Е = f(с) или Е = f(-?g c). Затем берут навеску анализируемого образца на аналитических весах (до 0,0001 г) переносят в мерную колбу на 100 мл, добавляют до метки и в том же аппаратном исполнении определяют ЭДС.

По калибровочному графику находят С или -?g С

4.3.4 Потенциометрическое титрование

Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода. Как и в прямой потенциометрии, для потенциометрического титрования собирают цепь из индикаторного электрода, чувствительного к определяемому иону и электрода сравнения, но метод имеет ряд преимуществ:

Позволяет вести определение в присутствии посторонних веществ, влияющих на потенциал индикаторного электрода, путём подбора титранта, реагирующего с определяемым веществом.

При использовании электродноактивных титрантов позволяет определить вещества, для которых отсутствуют селективные электроды.

При окислительно-восстановительном титровании в качестве индикаторного используют электрод из Pt или другого благородного металла.

При кислотно-основном титровании в качестве индикаторного может быть использован стеклянный электрод или другой рН-чувствительный, например хингидронный.

При реакции осаждения выбирают электрод, чувствительный к определяемому веществу или к применяемому титранту. Например, серебряный электрод может быть применён как индикаторный при осаждении ионов серебра, а так же для определения ионов (Cl -, Br -, CN -, SCN -, AsO43-, CrO42-) образующих малорастворимые соли серебра при использовании в качестве титранта раствора AgNO3.

Комплексонометрическое титрование обычно проводят с металлическими электродами, соли меди -- с медным, соли никеля -- с никелевым, или соответствующим ион-селективным.

Задача потенциометрического титрования сводится к определению объёма титранта, затраченного на реакцию, к определению точки эквивалентности. Самый удобный и простой способ определения точки эквивалентности по кривой титрования, которая строится по результатам титрования. При этом на оси абсцисс откладывается объём прилитого раствора -- (мл), а на оси ординат -- соответствующее значение Е (ЭДС) ячейки.

В точке эквивалентности наблюдается резкий скачок ЭДС. В зависимости от выбранной величины кривая титрования может быть интегральной, выражающей прямую зависимость ЭДС системы от объёма прилитого раствора и точка эквивалентности находится по её перегибу (похожа на кривую титрования в методе нейтрализации).

Дифференциальная кривая выражает зависимость изменения величины ДЕ : ДV от объёма прилитого рабочего раствора, кривая имеет вид пика, max пика соответствует точке эквивалентности.

ДЕ/ДV

Qв-ва =

Qв-ва = TVт.э.

Vт.э. Vмл

Установка для потенциометрического титрования.

5

4

2

3

1

1 -- магнитная мешалка

2 -- электролит ячейка с анализируемым раствором

3 -- индикаторный электрод (ст)

4 -- электрод сравнения (Х 1/с)

5 -- бюретка

6 -- рН метр

Расчёт кривых титрования и скачка титрования в кислотно-основном титровании.

Рассмотрим этапы титрования 100 мл 0,1 н HCl раствором 0,1 н NaOH, в качестве индикаторного используется хингидронный электрод, потенциал которого зависит от [H+]

Ехг. = Е0хг. + 0,059 ?g[H+]

Е0хг. = 0,099; Ехг. = 0,099 - 0,059 рН; Ехг. = 0,099 + 0,059?g[H+]

А) к 100 мл 0,1 н HCl -- 90 мл 0,1 н NaOH

[H+] =

[H+] = = 5,26 ·10-3

рН = -?g5·10-3 = 3?g10 - ?g5 = 2,3

Ехг. = 0,099 - 0,059·2,3 = 0,099 - 0,135 = 0,564

Б) к 100 мл 0,1 н HCl -- 99 мл 0,1 н NaOH

[H+] = = = 5·10-4

рН = -?g5·10-4 = 4?g10 - ?g5 = 3,3

Ехг. = 0,099 - 0,59·3,3 = 0,699 -0,195 = 0,504

В) к 100 мл 0,1 н HCl -- 99,9 мл 0,1 н NaOH

[H+] = = = 5·10-5

рН = -?g5·10-5 = 5?g10 - ?g5 = 4,3

Ехг. = 0,699 - 0,059·4,3 = 0,699 - 0,254 = 0,445

Г) в точке эквивалентности рН = 7

Ехг. = 0,699 - 0,059·7 = 0,699 - 0,413 = 0,286

Потенциометрический метод позволяет вести количественное определение смеси кислот, если Kg их различаются не менее, чем на три порядка. При титровании смеси, содержащей соляную и уксусную кислоту на кривой титрования обнаруживается два скачка, первый свидетельствует об окончании титрования HCl, а второй -- при оттитровывании СН3СООН. Несколько скачков при титровании многоосновных кислот (H3PO4, H2CrO4 и др).

На основании полученных данных титрования можно построить дифференциальную кривую в координатах ДЕ/ДV - V, она будет иметь вид пика.

Д) после достижения Т.Э. -- в избытке NaOH добавлено 100,1 мл NaOH

[OH -] = = = 4,99·10-5

рОН = -?g5·10-5 = 5?g10 - ?g5 = 5 - 0,7 = 4,3

Ехг. = 0,699 - 0,059·9,7 = 0,699 - 0,572 = 0,127

Скачёк титрования от недостатка 0,1 до избытка 0,1 ДЕ = 0,445 - 0,127 = 0,318

Данные для расчёта дифференциальной кривой (метод нейтрализации).

Объём раствора NaOH, V мл

ДV

E

ДE

ДE/ДV

0

0,699

0,015

9,0

0,135

9,0

0,564

0,066

0,9

0,06

9,9

0,504

0,62

0,09

0,059

9,99

0,445

15,9

0,01

0,159

10,0

0,286

1,59

0,1

0,159

10,1

0,127

5 Хроматография

Хроматография -- метод разделения и анализа смесей веществ, основанный на различном распределении их между двумя несмешивающимися фазами -- подвижной и неподвижной.

При контакте с поверхностью неподвижной фазы (НФ) компоненты смеси распределяются между подвижной фазой (ПФ) и неподвижной фазой (НФ) в соответствии с их свойствами (адсорбируемостью, растворимостью или др.)

Устанавливается динамическое равновесие, вследствие чего молекулы разделяемой смеси часть времени находятся в НФ, а часть -- в ПФ, а разные вещества обладают различным сродством к подвижной и неподвижной фазой, поэтому вещества, сильные взаимодействующие с НФ, будут медленнее двигаться через хроматографическую систему по сравнению с веществом, слабее с ней взаимодействующим.

Бурное развитие методов хроматографического анализа началось с работ лауреатов Нобелевской премии А.Мартина и Д.Синджа, где были предложены и разработаны методы распределительной хроматографии (1941 г.). В 1952 г. были получены первые работы в области газожидкостной хроматографии, были усовершенствованы конструкции систем ввода проб, созданы чувствительные детекторы. Метод газовой хроматографии -- первый из всех хроматографических методов, получивший инструментальное обеспечение.

Начиная с 70-х годов происходит бурное развитие жидкостной хроматографии, создаются новые сорбенты и высокопроизводительное оборудование, позволяющее анализировать сложные смеси, содержащие десятки и сотни различных веществ.

В настоящее время жидкостная колоночная хроматография является одним из наиболее интенсивно развивающихся методов аналитической химии.

5.1 Хроматография. Общие принципы и классификация

Хроматографический метод основан на распределении вещества между двумя несмешивающимися фазами, одна из фаз подвижна -- ПФ, а другая неподвижна -- НФ. Метод можно представить как процесс многократного повторения фактов сорбции и десорбции вещества при движении его в потоке ПФ вдоль неподвижного сорбента -- НФ, это наблюдается при прохождении потока газов, паров, жидкостей через колонку, содержащую зернённый слой сорбента.

Подвижной фазой является смесь, она может быть жидким раствором или газовой смесью, неподвижной фазой является сорбент твёрдый с большой поверхностью, сорбент может быть жидким, нанесённый тонкой плёнкой на поверхность твёрдого носителя.

Хроматографические методы анализа получили широкое распространение благодаря соей универсальности, экспрессивности и высокой чувствительности. Применяется широко в различных областях промышленности, науки и техники, в экологии, медицине, биологии, криминалистке и т.д.

5.1.1 Классификация хроматографических методов анализа

I. По агрегативному состоянию подвижной фазы:

А) Газовая хроматография -- подвижная жидкость - газ.

Б) Жидкостная хроматография -- подвижная фаза -- жидкость.

При этом возможны следующие варианты:

№ п/п

Наименование метода

Неподвижная фаза

Подвижная фаза

1

Газо-адсорбционная хроматография

Твёрдая

Газовая

2

Газо-жидкостная хроматография

Жидкая на твёрдом носителе

Газовая

3

Жидкостная адсорбционная хроматография

Твёрдая

Жидкая

4

Жидкостная распределительная хроматография

Жидкий поглотитель на твёрдом носителе

Жидкая

П. По механизму разделения смеси:

а) Адсорбционная хроматография основана на различной адсорбционной способности веществ на данной адсорбенте.

б) Ионно-обменная хроматография основана на способности веществ обмениваться ионами друг с другом.

в) Осадочная хроматография основана на различной растворимости осадков.

г) Распределительная хроматография основана на различном распределении веществ (с разными коэффициентами распределения).

Ш. В зависимости от способа относительного перемещения фаз -- подвижной фазы вдоль неподвижной различают следующие виды хроматографии:

1. Проявительная (элюентная) хроматография.

При работе по этому методу разделяемая смесь переносится потоком вещества (элюента), который сорбируется хуже, чем любой компонент смеси.

Через слой сорбента, находящийся в хроматографической колонке, непрерывно пропускают поток элюента, называемого носителем (он может быть газообразным или жидким). В поток носителя на входе в колонку вводят небольшой объём разделяемой смеси, содержащей компоненты А и В, которая увлекается потоком носителя и продвигается по колонке через слой сорбента.

Если компонент В сорбируется лучше, чем компонент А, то при движении смеси по колонке компонент В задерживается сорбетном сильнее и отстаёт от компонента А, и они пространственно разделяются, компонент А занимает часть объёма колонки впереди, а компонент В -- часть объёма позади. Эти части объёма называются зонами компонентов, при этом компоненты находятся в зонах не в чистом виде, а в смеси с элюентом, и выходят из колонки в порядке возрастания их сорбируемости.


Подобные документы

  • Цели и задачи аналитического контроля на предприятии. Деятельность заводской лаборатории по проверке качества. Характеристика характеристика физико-химических методов анализа. Основные параметры в хроматографических и титриметрических методах анализа.

    реферат [43,4 K], добавлен 28.12.2009

  • Статистический приемочный контроль качества продукции как основной метод контроля поступающих потребителю сырья, материалов и готовых изделий. Виды планов статистического контроля партии продукции по альтернативному признаку, основные требования к ним.

    контрольная работа [21,0 K], добавлен 04.10.2010

  • Ультразвуковые методы контроля позволяют получить информацию о дефектах, расположенных на значительной глубине в различных материалах, изделиях и сварных соединениях. Физические основы ультразвуковой дефектоскопии. Классификация методов контроля.

    реферат [4,7 M], добавлен 10.01.2009

  • Понятие и показатели качества продукции. Квалиметрия: история развития, задачи, объекты. Контроль качества продукции машиностроительного предприятия и его правовая основа. Организация и методы контроля качества ремонтируемых изделий в ОАО "ММРЗ".

    дипломная работа [229,1 K], добавлен 09.04.2008

  • Аналитический контроль производства веществ и материалов. Сертификация продукции по химическому составу. Метод кислотно-основного титрования. Методы определения влаги в рыбных продуктах. Ускоренные методы сушки. Фотометрические методы исследования.

    реферат [80,1 K], добавлен 24.11.2012

  • Дефекты и контроль качества сварных соединений. Общие сведения и организация контроля качества. Разрушающие методы контроля сварных соединений. Механические испытания на твердость. Методы Виккерса и Роквелла как методы измерения твердости металла.

    контрольная работа [570,8 K], добавлен 25.09.2011

  • Организационная структура испытательного центра "Ярославский государственный институт качества сырья и пищевой продукции". Методы контроля изготовления пищевой продукции. Принцип работы приборов "Анализатор качества молока" и "Лабораторный иономер".

    курсовая работа [661,6 K], добавлен 30.09.2014

  • Влияние внедрения автоматизированного контроля технологического процесса производства вареных колбас на качество продукции и надежность работы технологических линий. Подбор манометра для измерения избыточного давления и датчиков контроля температуры.

    доклад [12,6 K], добавлен 04.10.2015

  • Взаимосвязь технологических и организационно-управленческих структур. Понятие о химико-технологических процессах, принципы классификации. Перспективы развития и особенности экономической оценки химико-технологических процессов. Специальные методы литья.

    контрольная работа [50,0 K], добавлен 10.07.2010

  • Понятие и методики неразрушающего контроля качества, его значение в производстве изделий и используемый инструментарий. Разновидности дефектов металлов, их классификация и возможные последствия. Неразрушающий контроль качества методами дефектоскопии.

    контрольная работа [155,9 K], добавлен 29.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.