Основы высшей математики
Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.06.2011 |
Размер файла | 64,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию ГОУ ВПО
Филиал Уральского государственного экономического университета в г. Березники
Кафедра математики и естественных наук
Контрольная работа № 1
по дисциплине: "Математика"
Выполнил:
Студентка I курса,
группы ЭКПС-091
Лоскутова Ирина Петровна
Проверил:
к. ф-м. н., профессор
Кобзев Виктор Николаевич
Березники
2009
Задача 1.1 Вычислить определитель 4-го порядка
Решение. Так как элемент , то 1-ую строку нужно умножить на (- 2) и прибавить ко 2-ой строке; 1-ую строку умножаем на (- 3) и прибавляем к 3-ей строке; 1-ую строку умножаем на (- 4) и прибавляем к 4-ой строке, получаем матрицу:
Ответ: .
Задача 1.2 Решить систему матричным способом
Решение. В матричной форме система имеет вид: (1), где
; ; .
Найдем определитель матрицы А:
.
Так как , то матрица А невырожденная и обратная матрица существует.
Найдем матрицу , транспонированную к А:
.
Найдем алгебраические дополнения к матрице :
;
;
;
;
;
;
;
.
Из алгебраических дополнений элементов матрицы составим присоединенную матрицу :
.
Вычислим обратную матрицу :
.
Проверим правильность вычисления обратной матрицы:
По формуле (1) вычислим:
Ответ:
Проверка:
Система решена верно.
Задача 1.3 Решить систему методом Крамера
Решение. Найдем определитель системы
Так как , то по теореме Крамера система имеет единственное решение.
;
.
математический матрица невырожденный транспонированный
По формулам Крамера:
;
Ответ: решение системы .
Задача 1.4 Найти общее решение системы, используя метод Гаусса
Решение. Расширенная матрица система имеет вид:
Так как элемент , то 1-ую строку прибавляем ко 2-ой строке, 1-ую строку умножаем на (- 2) и прибавляем к 3-ей строке, 1-ую строку умножаем на 4 и прибавляем к 4ой строке, исключим элемент из всех строк, начиная со второй. Результаты запишем в матрицу:
Так как элемент , то, прибавляем 2-ую строку к 3-ей, умножаем 2-ую строку на (- 2) и прибавляем к 4-ой строке, исключим элемент из 3-ей и 4ой строк. Результаты запишем в матрицу:
Так как элемент , то, умножаем 3-ю строку на (- 1) и прибавляем к 4-ой строке, исключим элемент из 4-ой строки. Результаты запишем в матрицу:
Система уравнений примет вид:
,
- связные элементы, - свободная,
Ответ:
Проверка. Подставим все значения в первое уравнение системы.
Получим:
система решена верно.
Задача 1.5
Даны векторы
, .
Найти: 1) , 2) , 3) , 4) , 5) .
Решение
, .
1) .
2)
.
3) .
4)
Т.к. , то
5) .
Ответ:
1) ,
2) ,
3) ,
4) ,
5) .
Размещено на Allbest.ru
Подобные документы
Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.
презентация [184,4 K], добавлен 21.09.2013Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.
контрольная работа [126,9 K], добавлен 20.04.2016Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.
контрольная работа [95,0 K], добавлен 23.02.2012Классификация способов нахождения обратной матрицы, полученной в системе MathCAD с помощью миноров и алгебраических дополнений: разбиения ее на клетки и на произведение 2-х треугольных матриц; с помощью модели Гаусса. Вычисление погрешности методов.
лабораторная работа [380,9 K], добавлен 31.10.2012Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.
учебное пособие [658,4 K], добавлен 26.01.2009Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа [138,7 K], добавлен 05.07.2015Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа [97,3 K], добавлен 24.05.2009Понятие обратной матрицы. Пошаговое определение обратной матрицы: проверка существования квадратной и обратной матрицы, расчет определителя и алгебраического дополнения, получение единичной матрицы. Пример расчета обратной матрицы согласно алгоритма.
презентация [54,8 K], добавлен 21.09.2013Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
контрольная работа [462,6 K], добавлен 12.11.2010