Методика разработки и использования средств информационно-коммуникационных технологий для формирования геометрической компетентности учащихся основной школы

Особенности использования средств информационно-коммуникационных технологий в образовании. Этапы разработки средств ИКТ для обучения геометрии. Организация деятельности учащихся по формированию геометрической грамотности. Педагогический эксперимент.

Рубрика Педагогика
Вид диссертация
Язык русский
Дата добавления 24.07.2010
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Организационный момент

В начале каждого урока рекомендуется напоминать логическую структуру материала. Содержание организационного момента урока обычно отвечает на такие вопросы:

- Что изучалось до этого?

- Что будет изучаться в данном уроке?

- Как изученный материал связан с новым материалом и каково место того и другого в целом курсе?

Организационный момент нередко включает в себя описание цели предстоящего занятия, информацию о месте занятия во всем курсе. Главная методическая задача организационного момента- привлечь внимание учащихся, сформировать у них нужную установку, заинтересовать, включить в работу, помочь ответить на вопросы: зачем мне это учить? Удачный способ оформления организационного момента- использование видео- или аудиофрагментов, где информация представляется от лица автора (ов) курса.

Сообщение о целях обучения

Хорошее описание целей обучения отвечает на вопросы, что обучаемый может сделать, какое представление он может продемонстрировать после того, как успешно выполнить все, чего требует урок. Желательно описывать цели как можно проще, неформально повествовательной манере. Здесь уместно прямое обращение к ученику. Например,

«После изучения этого раздела у вас сформируется профессиональный взгляд на содержание просматриваемых вами компьютерных учебных программ. Знакомясь с очередной КОП, вы сможете выделить в ней все элементы учебной структуры урока в том виде, в каком они представлены в рассматриваемой программе».

Изложение материала

Вопросы изложения отдельных элементов материала (описание процессов и процедур, изложение понятий, принципов и фактов) уже обсуждались в этом разделе. Вы легко различите их в структуре урока.

Упражнения

Изложение материала, как правило, сопровождается упражнениями. Главное достоинство электронных учебных материалов- возможность «разбавлять» изложение действиями и вопросами на понимание, закрепление излагаемого материала. Одна из задач упражнения- прерывать монотонное изложение материала (смена видов работы). Хорошо спланированные упражнения помогают учащимся постоянно актуализировать получаемую информацию. Они служат средством учета разнообразных стилей освоения материала (стилей обучения). В хороших электронных учебных материалах упражнения прерывают (оживляют) изложение учебного материала через каждые 3-7 экранов. Учащиеся немедленно получают обратную связь о результатах своих действий. Это помогает им понять, насколько успешно они работают, что именно им стоит делать по-другому. Упражнения акцентируют внимание обучаемых на отдельных фрагментах (элементах) излагаемого содержания.

Обратная связь о результатах действий учащегося

Оперативная обратная связь о ходе работы обучаемого - одно из главных методических украшений любого электронного учебного материала. При верном ответе положительное подкрепление информирует обучаемого о том, что он на верном пути. Положительное подкрепление ориентирует на работу с материалом, который следует дальше. Корректирующая обратная связь (сообщение о неверном действии или ответе) информирует обучаемого о трудностях в освоении материала, сообщает о верном действии (ответе) и, возможно, предлагает выполнить другое упражнение.

Внимание! Помните, что корректирующая обратная связь - это обучающее воздействие, а не оценка работы учащегося. «Не судите, да не судимы будете». Избегайте встречающихся иногда в электронных учебных материалах реакций типа «неверно», «ошибка», «будьте внимательнее» и т.п.

Связки между отдельными темами или вопросами

Каждый раз, когда внутри урока вы переходите к новому вопросу, возникает необходимость в связке. По своей сути связка - организационный момент в миниатюре. Она напоминает, что было изучено и как это относится к следующей теме. Главная задача связки - зафиксировать внимание учащегося на факт перехода к новому вопросу.

Подведение итогов

Этот элемент учебной структуры позволяет еще раз напомнить учащимся об основном содержании изученного материала. Чтобы закрепить предлагаемое содержание, его желательно повторить в различных формах не менее 3-5 раз. Учебная структура урока позволяет это сделать:

- При изложении материала;

- В ходе упражнений;

- При ответе на контрольные вопросы;

- При подведении итогов;

Рассматривайте подведение итогов как неотъемлемую составную часть процесса подачи учебного материала.

Итоговая практическая работа

Итоговая практическая работа проводится в конце урока. Она должна собрать все изученные на уроке элементы в общую картину. Здесь учащиеся сталкиваются с примером практической задачи, и решения которой надо применить все усвоенное раннее. Старайтесь сделать практическую работу настолько похожей на реальную практику, насколько это допускают имеющиеся условия. Практическая работа позволяет обучаемым почувствовать, что они действительно чему-то научились в ходе урока. В ходе выполнения практической работы старайтесь минимизировать поддержку обучаемого. Отложите обсуждение верных и неверных действий до окончания работы. При необходимости дать ему возможность попрактиковаться еще раз. Не забывайте о главном достоинстве самостоятельной работы учащихся с электронным учебным материалом: в отличие от традиционного урока, учащиеся могут легко вернуться к пройденному. Поощряйте тех, кто готов это делать для более глубокого освоения курса.

Проверка освоения материала

Вопросы проверки освоения материала (задания и способы контроля) будут подобно рассмотрены в специальном разделе.

Повторное изложение материала

Повторное изложение - еще один важный элемент учебной структуры, которая отсутствует в традиционных учебниках, однако часто встречается в электронных учебных материалах. Обратите внимание: это не просто повторение, а повторное знакомство с тем же материалом, которая поддается в новом изложении. Повторное изложение - всегда специально организованное сокращенное изложение материала, обращающее внимание на те элементы содержания, которые не освоены при первоначальном изложении. В ходе повторного изложения обычно поясняют, почему те или иные знания и / или навыки не освоены, освоены не в полном объеме или поняты не верно. Возможно также использование других форм подачи материала(скажем, к звуку добавлен текст), новых примеров, новых аналогий и т.п.

Повторная проверка освоения материала

Повторное изложение завершается повторным контрольным заданием. Для этого можно использовать уже предлагавшиеся учащимся вопросы или подготовить новые, дополнительные вопросы и задания.

Когда и как составлять и использовать учебную структуру урока

При планировании урока обычно не возникает трудности разбить его на тематические составляющиеся - разделы, если такое разбиение необходимо. Значительно больше вопросов возникает при проработке учебной структуры урока. Мы рекомендуем прорабатывать данную структуру также детально, как вы прорабатывали цели обучения. По сути, это - детальный план сценария. Его надо составить, обсудить с коллегами и, возможно, несколько раз изменить, прежде чем начать работу над учебными текстами. Тщательно разработанная учебная структура урока позволяет оптимизировать освоение материала, минимизировать возможную потерю цельности изложения, обеспечить методическое качество создаваемых материалов на ранней стадии их разработки.

Процесс подготовки учебной структуры и его результат имеют еще одно важное значение: целенаправленная подготовка и фиксация учебной структуры урока позволяют формально разграничить работу педагогического дизайнера и сценариста, автора учебных текстов. Когда учебная структура урока зафиксирована, работа над учебными материалами приобретает предметный характер. Другое достоинство тщательное проработки учебной структуры урока - возможность распараллелить работу над текстом сценария между несколькими специалистами. Зафиксированная структура урока существенно упрощает процесс тестирования и до работки электронных учебных материалов.

ПОДГОТОВКА ПЛАНА ЭЛЕКТРОННЫХ УЧЕБНЫХ МАТЕРИАЛОВ

Учебная структура урока - основа для построения плана урока, на основе которого затем готовится рабочий (полноэкранный) сценарий урока. Взятые вместе планы уроков образуют план материалов в целом. Детализированный план урока, как правило, включает в себя следующую информацию:

- Диаграмму (блок - схему) обучающей программы с явным указанием всех сопряжений данного урока с другими частями компьютерного курса;

- Диаграмму (блок - схему) урока с указанием всех его разделов;

- Названия и коды урока и каждого его раздела;

- Цели урока;

- Собственно пункты плана урока;

- Ожидаемую продолжительность урока;

- Удельный вес (значимость) данного урока в системе всех кодов КОП;

- Вводный текст к уроку;

- Способы подачи материала;

- Способы текущего и итогового контроля;

- Заставки (используются, на пример, при входе в программы и выходе из нее);

- Экран регистрации (используется для регистрации нового пользователя);

- Экран меню;

- Информационный экран (используется для представления информации);

- Экран вопросов;

- Транзитный экран;

- Экран упражнений;

Типовые экраны нужны и разработчику, и обучаемому. Первому они упрощают и стандартизируют процесс разработки. Второму они позволяют легче ориентироваться в материале, действовать по умолчанию. Обучаемые должны концентрироваться на содержании учебных материалов, а не на работе с ними. Хорошо разработанный интерфейс прозрачен для обучаемых, не отвлекает их внимания. Если на вопрос: «В какой точке произошло ветвление обучающей программы?» - обучаемый отвечает: «Я не заметил никаких ветвлений», - значит, интерфейс ему действительно не мешает. Выбрав типовые экраны, не старайтесь их разнообразить. Они должны отличаться друг от друга лишь содержанием информации.

Инструментальные пакеты обычно предлагают разработчику готовые наборы (варианты) типовых экранов. Одновременно они представляют средства для их изменения или подготовки собственных экранов.

Разработка учебного интерфейса - большая самостоятельная область, которую желательно осваивать на практике. Когда вы начнете разрабатывать свои типовые экраны, постарайтесь учитывать следующие соображения.

Элементы экрана не должны «накладываться» друг на друга. Такая опасность возникает, например, при использовании «всплывающих подсказок». Обучаемый должен всегда видеть все составляющие экрана. Это в первую очередь касается навигационных элементов.

Важной составляющей оформления экрана является цветовая гамма. Рекомендуется подготовить первый прототип и поработать с ним некоторое время. Некоторые цветовые сочетания могут выглядеть весьма привлекательно, но начинают раздражать при продолжительной работе. Рекомендуется провести экспериментальное обучение с новой цветовой гаммой в течении 10-15 минут, прежде чем принять её в работу.

Есть немало общих рекомендаций по использованию цветовых сочетаний. Например:

- Используйте «холодные» тона (например, желтый или синий) в качестве фона.

- Старайтесь избегать «горячих» тонов (красный или зеленый). Они годятся только для аварийных сообщений и т.п.

В «Справочнике WEB-дизайнера» можно найти детальные рекомендации по выбору цветовой гаммы. Немало полезной информации и специальных инструментов для подбора цветовых сочетаний можно найти в Интернете (www.design.ru/tema/top10/right_colors.html и т.п.)

При обработке ответов учащихся обязательно предусматривайте реакцию на все мыслимые действия обучаемых. При первом неверном ответе не спешите с оценкой, дайте возможность учащемуся сделать еще одну попытку. Хорошим средством обратной связи может служить звуковой сигнал. Чудной звук (например, «Кар-р-р-!!!»)с в ответ на неверное действие лучше информирует ученика, чем пространственное объяснение.

Старайтесь ограничивать время работы обучаемого с учебной информацией на экране. Текст и др. учебная информация должны оставаться на экране до тех пор, обучаемый не подтвердит, что он закончил с ним знакомиться.

Следите за тем, чтобы обучаемый точно знал, что от него ожидается и какие действия он может или должен предпринять. Используйте подсказки и другие виды обратной связи, чтобы ученик всегда знал, как продолжить работу или выйти из курса.

Дайте учащимся возможность в любой момент получить напоминание о правилах работы. Предусмотрите кнопку «Помощь», которая будет легко доступна из любого места учебных материалов.

Обучаемый имеет право на любой момент прекратить работу с учебным материалом. Предусмотрите соответствующий инструмент на каждом экране. Не забывайте, что электронные учебные материалы - инструмент самообучения. Нельзя заставить обучаемого работать, если он этого не хочет.

Каждый из этих документов оформляется всоответствии с внутренними стандартами, а сами документы прилагаются к рабочему сценарию и являются его неотъемлемой составной частью.

Итак, были рассмотрены основные процедуры разработки сценария учебных материалов. Однако подготовку рабочего сценария (поэкранную проработку курса) можно освоить только в ходе реальной подготовки электронных учебных материалов.

Вопросы и задания в электронных учебных материалах

В этом специальном разделе обсуждается, как говорить контрольные вопросы, проверять и оценивать работу учащихся с электронным учебным материалом. Внешний вид любого задания зависит от целей обучения и содержания изучаемого материала, от особенности работы обучаемых и от ожидаемых результатов обучения. Необходимо различать, в чем сила и слабость различных способов оценки работы обучаемых, уметь составлять вопросы со сводным ответом (открытые вопросы), отвечая на которые ученик должен написать связанный текст (сочинение).

Методика применения средств ИКТ, ориентированных на формирование геометрической грамотности учащихся на основе ИКТ

Методика проведения воспитательного процесса при обучении математике должна соответствовать возрасту учащихся, содержанию изучаемого материала и проводиться в три этапа.

1 этап - V-VI классы.

При изучении геометрического материала важно приучить учащихся находить в окружающем мире соотвествующие предметы, причем своеобразие отражения математикой действительности нельзя понимать узко, только как обращение непосредственно к вещам окружающей нас действительности. Широте понимания могут помочь различного рода модели, чертежи - все материализованные реализации, а также идеальные образы, связь которых с действительностью уже воспринята учащимися.

После ознакомления с различными предметами, имеющими форму геометрических фигур, необходимо обращать внимание учащихся на важнейшие свойства этих фигур: равномерную кривизну круга, «жесткость» треугольника (признаки будут изучены в 7 классе), двукратную симметрию прямоугольника и т.д. Воспитание у детей привычки видеть геометрические фигуры в окружающих нас предмета имеет первостепенное значение, так как в результате дети учатся обнаруживать зависимость между геометрией и практической деятельностью людей, устанавливать источники развития научного знания.

На этой ступени обучения следует обращиться к лабораторным работам, на которых приучать измерять величины, работать с картоном или бумагой для последующего конструирования различных геометрических фигур.

2 этап VII - IX классы.

Учебный материал VII - IX классов значительно расширяет возможности воспитательного воздействия на обучаемых.

Исключительно важное значение для целей воспитания имеет курс геометрии, где учащиеся впервые встречаются с дедуктивным методом доказательства (аксиоматическим методом) . Здесь впервые они встречают высокую требовательность к полноте аргументации. Вначале она удивляет, пугает их, кажется им излишней,педантичной. Но постепенно день за днем они к ней привыкают. Этот воспитывающий процесс имеет решающее значение для совершенствования логической культуры мышления. Важно, чтобы логике, формальному доказательству геометрических фактов предварялось расмотрение конкретных фактов, примеров. Например, на свойствах параллелограмма основан параллельный перенос (трансляция). Многие физические движения (так называемые поступательные, перемещения), используемые в различных механизмах, приводится к параллельному переносу. Таково, например, перемещение ползунка, движущегося в прямолинейных пазах затвора фотоаппарата, и т.д.

Заключая тему о четырехугольниках, стоит указать на одно интересное свойство, имеющее практическое значение: оказывается, равными чеиырехугольниками (плитками) произвольной формы можно сплошь покрыть плоскость.

Свойство вписанных углов находит применение при определении положения точки по известынм ее направлениям на три другие точки, положение которых также дано. Решение дает возможность определить положение корабля на море или самолета в воздухе при помощи радиолокации. Радиостанции (так называемые радиомаяки) посылают сигналы определнной длины волны. Приемное устройство на корабле дает возможность опредлеить направление на передающиую радиостанцию. Если известны положения трех таких радиомаяков и направления на них, то возможно определить положение корабля.

Таким образом учащиеся должны воспринимать общее через проявление его в конкретном.

3 этап - X-XI классы.

Представляются большие возможности в определенной мере философского осмысления изучаемого материала, а именно более детального знакомства и изучения «актуальной» и «потенциальной бесконечности, построения различных уровней математических абстракций (возрастание абстрактности в математике, отношение математических абстракций к объективной реальности, примеры построения математических абстракций и т.д.), математического моделирования и т.д.

На этом этапе историзм выступает не как сообщение учащимся наиболее ярких примеров из истории математики и знакомство с великими математиками (хотя это также необходимо), не только как история успехов мышления, но и как история процесса мышления с объяснением объективных движущих сил этого процесса. При изучении геометрии нужно постоянно обращаться к интерпретации изучаемых идеализированных математических моделей. Например, при изучении свойств пирамиды заслуживает особого внимания следующее: пересекая пирамиду плоскостью, параллельной основанию, получим сечение, площадь которого прямо пропорциональна квадрату расстояния от вершины. Это обстоятельство служит теоретическим объяснением зависимостей между силой освещенности и расстоянием от источника света.

Действительно, если представить себе, что в вершине пирамиды находится источник света, то световой поток, перехватываемый параллельными сечениями пирамиды, распределяется по ее поверхности. При увеличении расстояния площадки от вершины вдвое площадь увеличится вчетверо, а количество световой энергии, приходящееся на единицу площади, станет вчетверо меньше. Итак, сила освещения должна быть обратно пропорциональна квадрату расстояния от источника света. Пользуясь этим законом, астрономия определила расстояние до самых отдаленных объектов Вселенной. Аналогичными примерами можно сопровождать изучение свойств других геометрических тел.

Мы согласны с авторами практикума[ ], что в процессе изучения математики (геометрии) можно повлиять на формирование личности учащегося логикой предмета, методологическим обоснованием математических фактов, прикладной направленностью содержания курса. Надо раз и навсегда отказаться в школе от технократического мышления, когда средства превалируют над целью, когда на учащегося смотрят как на обучаемый, программируемый компонент системы, как на объект самых разнообразных манипуляций, а не как на личность с бесконечными степенями свободы ее проявления.

Остается на протяжении нескольких лет актуальным вопрос использования информационных технологий и компьютерных средств в учебном процессе средней школы. Проблемы все в той же низкой материально-технической стороне создания компьютерной базы учебных заведений, в ликвидации компьютерной неграмотности обучающих и обучающихся. Необходима также разработка общей методики применения современных информационных и телекоммуникационных технологий, компьютерных и мультимедийных продуктов в учебном процессе и вооружению частными приемами этой методики учителей каждого предмета.

Н.Х.Розов считает, если не принять эффективных неотложных мер для обучения как действующих, так и будущих преподавателей-предметников реальному внедрению компьютерных технологий и образовательных продуктов в аудиторные плановые занятия, во внеклассную работу с учащимися, в их самостоятельную учебно-исследовательскую деятельность и т.д., то существует высокая вероятность того, что учебный процесс будет еще долго осуществляться «писанием мелом на доске», «живым говорением» - и лишь где-то в углу шкафа в учительской прибавиться сиротливо пылящаяся горка цветных пластмассовых коробочек с образовательными дисками. [1] И самое плачевное, что это подтверждает практика преподавания в школах. Проведенный опрос среди учителей математики г. Семипалатинска показывает, учителя - предметники не видят преимуществ использования на уроках персонального компьютера, не готовы отойти от традиционного преподавания. Консерватизму педагогов в отношении компьютеризации школьного образования способствуют разобщенность педагога и персонального компьютера - по материальным причинам весьма значительное число учителей не может иметь компьютер дома, и тем более свободно пользоваться Интернетом.

Ответы при опросе подтверждают, что многие из педагогов не только не умеют пользоваться программным обеспечением, но и не знают о существовании графических пакетов, о наличии электронных учебников. Это отрицательно сказывается на реализации информатизации учебного процесса. Не понимают, что очень много времени отводят, чтобы научить ученика строить чертеж, когда гораздо проще ученику выполнить построение, использовав графические возможности компьютера. Если дать каждой школе кроме лабораторий ЭВМ - кабинета информатики мультимедийный класс для проведения урока геометрии и компьютерный класс для выполнения учащимися домашней работы по геометрии, это принесет пользу: компьютер будет использоваться учащимися не только как средства развлечения, а как хорошее средство избавления от рутинной работы над чертежом к задаче. Облегченный труд всегда вызывает интерес и дает эффективность усвоения знаний.

Беспалов П.В. полагает, что в результате эффективного компьютерного обучения должна быть сформирована информационно-технологическая компетентность. Она не сводится к разрозненным знаниям и умениям работы с компьютером, а является интегральной характеристикой целостной личности обучающихся, предполагающей ее компьютерную направленность, мотивацию к усвоению соответствующих знаний и умений, способность к решению мыслительных задач в учебной и профессиональной деятельности с помощью компьютерной техники, владение приемами компьютерного мышления.

Компьютерная компетентность формируется как на этапе изучения компьютера, так и при его применении в качестве средства дальнейшего обучения. И в том и другом случаях ей соответствуют определенные личностные качества и мотивация обучающихся. [ ]

Применение методов математического моделирования, использования ПЭВМ усиливает практическую направленность многих геометрических задач. В результате деятельность по изучению предмета становится более интересной, качественной и эффективной. В имеющихся учебниках геометрии представлены задачи трех типов: на вычисление, на построение и на доказательство.

Каждый учебный предмет может выявить и развить различные способности учащихся. Геометрия имеет большие потенциальные возможности для развития пространственного воображения, логического мышления, практических действий, связанных с моделированием геометрических и реальных объектов.[ ]

При решении геометрических задач формируются и развиваются общеобразовательные и профильные умения и навыки:

§ соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями;

§ анализировать взаимное расположение геометрических фигур;

§ изображать фигуры, выполняя чертеж по условию задачи;

§ распознавать корректно и некорректно сформулированные условия задач и уметь правильно сориентироваться в конкретной ситуации;

§ применять координатно-векторный метод для вычисления отношений, расстояний и величин углов;

§ строить сечение многогранников и изображать сечение тел вращения;

§ моделировать несложные практические ситуации на основе изучения свойств геометрических фигур и отношений между ними;

§ исследовать решения задач с параметрическими данными.

В процессе решения стереометрических задач используется образное «правополушарное» мышление, которое является основой развития пространственных представлений. Чтобы добиться хороших геометрических знаний, способствующих развитию практических умений учащихся необходимо привить им не только навыки рисования от руки, но и графического моделирования с помощью компьютера.

Для того чтобы подготовку будущего учителя математики в педагогическом вузе ориентировать не только на овладение им фундаментальными математическими основами, но и на развитие способности к обоснованию собственных методических действий, умения осуществлять педагогическую рефлексию, стремления учитывать собственные индивидуальные особенности при проектировании и планировании педагогической деятельности, необходимо уделить большое внимание его компьютерной компетентности. Разрабатывая программы для элективных курсов студентам педагогических специальностей кафедра информатики СГПИ основной акцент делает на то, чтобы будущие учителя-предметники постигли методику самостоятельного применения в своей предстоящей повседневной работе нового учебного инструмента, новой формы ведения урока, новых типов представления учебных материалов, научились эффективно и творчески использовать те обучающие продукты, которые им представляют разработчики.

При этом на занятиях студентам-математикам необходимо показать такие решения геометрических задач, которые имеют преимущества перед традиционным решением.

К примеру, изучение первых разделов стереометрии начинается, как правило, с рассмотрения прямых и плоскостей в пространстве. Затем вводится понятие двугранного угла, и наконец, естественным образом возникают многогранники. Однако школьники хорошо знакомы с многогранниками уже к началу изучения стереометрии: в жизни им не раз приходилось иметь с ними дело. Учащиеся имеют определенный запас интуитивных представлений о свойствах простейших многогранников. Этот запас можно использовать при изучении первых разделов стереометрии. А именно, не вводя формальных определений многогранников, демонстрировать на компьютерных моделях различные утверждения, относящиеся к взаимному расположению прямых и плоскостей. При таком подходе изучение становится наглядным, менее формальным, а работа с многогранниками начинается раньше.

Многие свойства геометрических фигур становятся очевидными, если рассматривать не статичные фигуры, а наблюдать, что происходит с ними при изменении размеров и форм. Возможность «покрутить», «растормошить» геометрический объект дает компьютер. Можно продемонстрировать это на примере мультимедийной программы, например программы «Живая геометрия».

Попробуем ответить на вопрос: как расположены друг относительно друга высота, биссектриса и медиана треугольника, проведенные из одной вершины? Для поиска ответа полезно поэкспериментировать: рассмотреть несколько различных треугольников, и тогда сформулировать гипотезу. Но это достаточно трудоемко. Программа «Живая геометрия» позволяет «потянуть» треугольник за вершину, оставляя на месте одну из его сторон. При этом взаимное расположение медианы, биссектрисы и высоты остается неизменным.

Приведем еще один яркий пример использования указанной программы при изучении понятия симметрии. На экране проводится вертикальная прямая (ось симметрии), с одной стороны от нее рисуется любое существо, например собака. Затем собака симметрично отражается и детям говорится, что она смотрит на себя в зеркало. Потом животное начинает «делать зарядку» (с помощью компьютерной мыши) перед зеркалом: крутить хвостом, поднимать лапы и т.д. Его отражение повторят все эти действия. И наглядно, и забавно.

Создание условий для эффективного воспитания нового типа мышлений у школьников неразрывно связано с формированием этого типа мышления у школьных учителей. Для этого необходимо решить задачи, продиктованные информатизацией образования: обучить педагогов не только основам работы на компьютере и информационного обеспечения текущей работы учителя, но вызвать потребность у предметника, в первую очередь у геометра, в разработке методики использования компьютера при обучении своему предмету, в поиске области эффективного приложения и использования компьютера. Остается нерешенной проблемой - создание учебно-методического комплекса для учителей, который включал бы в себя программу и учебный план, учебное пособие, дидактический материал - комплект описаний практических занятий, методические рекомендации для преподавания предмета с использованием компьютерных средств.

Компьютер все больше играет роль эффективного средства учебно-воспитательной деятельности, является инструментом обработки и анализа педагогической информации, инструментом управления и организации учебно-воспитательного процесса.

В научной литературе отмечаются следующие возможные применения компьютера в процессе обучения:

- средство иллюстрации текста учебника;

- средство имитации работы различных устройств и объектов;

- средство моделирования различных явлений и процессов;

- виртуальная лаборатория;

- роль тренажера, позволяющего учащимся закреплять знания, умения и навыки;

- вычислительное устройство;

- информационно-справочная система.

При этом нельзя считать компьютер неотъемлемым средством обучения. Т.Вамош по этому поводу пишет: «Компьютерное обучение не должно занимать центральное место. Оно призвано содействовать достижению общеобразовательных целей, не превращаясь при этом в основное средство передачи знаний».

Компьютер никогда не будет наставником учащихся, это под силу лишь учителю. Компьютер не должен подменять собой взаимоотношения между учителем и учеником, в противном случае образование утратит гуманитарный аспект.

Ограниченность применения компьютеров в учебном процессе диктуется, в первую очередь, социально-педагогическими причинами. Компьютеры не должны править высшими человеческими ценностями, а должны служить им. Т.Вамош, В.Далингер обеспокоены ростом технократических тенденций в обществе в целом и в сфере образования в частности. Указаны следующие негативные последствия: утрата традиционных человеческих культурных ценностей вследствие усиленного акцента на технизацию обучения; унификация образования и постепенное исчезновение межличнсотных контактов; единобразие мышления в результате использования унифицированной технологии.

Компьютер не в состоянии передавать тонкие различия и нюансы прямой человеческой коммуникации, программные педагогичсекие средства передают знания пока упрощенными, усеченными, что унифицирует мышелние школьников. Любая, даже самая передовая технология приведет к успеху лишь тогда, когда будет учтен человеческий фактор.

Эффективность использования педагогических программных средств в обучении зависит от их качества. Педагогические программные средства должны служить мыслительным процессам, лежащим в основе формирвоания тех или иных навыков, то есть акцент в них должен быь сделан на процесс, а не на результат. Только в этом случае учащиеся будут выступать в роли «активных участников учебного процесса, конструирующих собственно мыслительные схемы, а не просто как пассивные получатели информации».

Существуют самые различные подходы к классификации педагогических программных средств. Далингер В.А предложил следующую:

1) Управляющие программы, выполняющие некоторые традиционные функции учителя. В частности, управления классом.

2) Обучающие программы, направляющие обучение, исходя из имеющихся у учащихся знаний и его индивидуальных предпочтений; как правило, они предполагают усвоение новой информации.

3) Диагностические программы, предназначенные для тестирования, оценивания или проверки знаний, способностей и умений.

4) Тренировочные программы, рассчитанные на повторение или закрепление пройденного и не содержащие нового учебного материала.

5) Базы данных по различным отраслям знаний, из которых хранимая в них информация может быть запрошена.

6) Измеряющие и контролирующие программы для датчиков, позволяющие получать и записывать информацию и управлять действиями роботов.

7) Имитационные программы, представляющие тот или иной аспект реальности с помощью ограниченного числа параметров для изучения его основных структурных или функциональных характеристик.

8) Моделирующие программы свободной композиции, представляющие в распоряжение обучаемого основные элементы и типы функций для моделирования определенной реальности.

9) Программы типа «микромир», похожие на имитационно-моделирующие, однако не отображающие реальность; в идеале - это воображаемая учебная среда, создаваемая при участии учителя.

10) Инструментальные программные средства, обеспечивающие выполнение конкретных операций, например, обработку текстов, составление таблиц, редактирование графической информации.

11) Языки программирования: системы кодирования, позволяющие управлять компьютером.

Уже высказано немало идей относительно использования компьютеров в учебном процессе, но эти идеи, странствуя по свету, ищут своего практического воплощения. Вот почему мы ставим своей задачей указать конкретные способы и приемы использования новых информационно-коммуникационных технологий в обучении геометрии.

На самых различных этапах обучения геометрии может быть использован компьютер, и это применение основано, прежде всего, на его графических и вычислительных возможностях.

Рассмотрим подробнее применение компьютера в процессе обучения геометрии.

В геометрии компьютер должен играть роль эффективного средства для наглядной иллюстрации понятий, демонстрирования чертежей и рисунков. И эта возможность компьютера, представлять динамику графических изображений, как никакая другая возможность, изменит характер преподавания геометрии: геометрические фигуры могут описываться с помощью процедур, а не только уравнений.

Заметим, что в школьном курсе геометрии можно выделить три вида чертежей:

а) чертежи, иллюстрирующие содержание вводимого понятия;

б) чертежи, которые образно представляют условие решаемой задачи или рассматриваемого математического предложения;

в) чертежи, иллюстрирующие преобразования геометрических фигур.

По отношению к тексту учебника иллюстрации можно разделить на три группы: ведущие, равнозначные и обслуживающие.

Ведущие иллюстрации самостоятельно раскрывают содержание учебного материала, заменяя основной текст.

Так, например, понятие луча в учебнике вводится следующим текстом: «На прямой а отметим точку О. Она разделяет прямую а на две части, называемые лучами, исходящими из точки О». Рисунок, иллюстрирующий этот текст учебника, дан статично, что не дает возможности увидеть его динамику. Вместо этого текста на компьютере можно реализовать демонстрацию презентации, которая поэтапно представит рисунок, иллюстрирующий понятие луча.

Вообще следует заметить, что все понятия, которым в школьном курсе геометрии даются конструктивные определения, следует подкреплять ведущей иллюстрацией. К таким понятиям можно отнести: луч, цилиндр, конус, сфера, шар и т.д. Программа «Тела вращения» демонстрирует на экране дисплея компьютера способы образования цилиндра и конуса.

Одновременно с демонстрацией ученикам предлагается озвученные определения тел: Цилиндром называется геометрическая фигура, полученная вращением прямоугольника вокруг одной из его сторон.

Конусом называется геометрическая фигура, полученная вращением прямоугольного треугольника вокруг одного из катетов.

Равнозначные иллюстрации служат целям более глубокого и эффективного усвоения содержания учебного материала.

Цель этих иллюстраций - дать определениям геометрических понятий, сформулированных в учебнике в свободной логической форме, адекватную алгоритмическую процедуру получения этих понятий.

Так, например, определение медианы треугольника дано в учебнике геометрии в следующей логической форме: «Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника». С помощью компьютера следует продемонстрировать внутрипонятийные связи этого понятия динамичным рисунком, на котором бы вначале был показан треугольник, затем высвечивались произвольная вершина треугольника и середина противоположной стороны его, после чего был бы проведен отрезок, соединяющий эти точки. Должно быть три различных рисунка на случай всех трех медиан, затем эти три рисунка объединяются в один.

Еще один пример. В учебнике дан текст, вводящий понятие «угла в 1 радиан»: «Центральный угол, опирающийся на дугу, длина которой равна радиусу, называется углом в 1 радиан». Следует сопроводить этот текст на компьютере равнозначной иллюстрацией, дающей возможность ученику увидеть процедурный характер получения этого понятия. Демонстрация этой иллюстрации может воспроизводиться по схеме:

а) чертится окружность произвольного радиуса с центром в точке О;

б) имитируется нитка, с помощью которой измеряется радиус этой окружности;

в) эта нитка откладывается по окружности от точки А, в результате чего появится точка В;

г) точка В соединяется с центром О окружности;

д) высвечивается радиус окружности ОА и дуга АВ и подчеркивается равенство их длин;

е) высвечивается центральный угол ВОА, и появляется соответствующий текст на экране дисплея.

Как замечено Далингером В.А., в учебниках геометрии, как правило, даются стандартные чертежи, и это приводит к связыванию школьниками формируемого геометрического понятия с фигурами определенного вида и расположения. Это происходит вследствие того, что использование стандартного чертежа вызывает у учащегося неверные ассоциации, в результате которых он в содержание понятия вносит и частные признаки демонстрируемой фигуры.

Равнозначные иллюстрации должны устранить разобщенность между словесным объяснением понятия и геометрической наглядностью, с этой целью учащимся следует предлагать рисунки, на которых бы варьировались несущественные признаки понятия.

Так, например, понятие угла в учебниках для VI класса иллюстрируется таким стандартным рисунком (рис. 1).

На дисплее компьютера надо показать вариативные рисунки (рис.2а, б, в, г, д, е.)

Обслуживающие иллюстрации призваны дополнять, конкретизировать содержание текста учебника.

В работе с геометрическими понятиями эти иллюстрации должны предлагать рисунки, на которых представлены различные комбинации существенных признаков понятий. Роль обслуживающих иллюстраций - сформировать у учащихся навык подведения под понятие.

Приведем пример. В понятии «биссектриса угла» можно выделить следующие существенные признаки:

1. Биссектриса угла - это луч.

2. Биссектриса угла выходит из вершины угла.

3. Биссектриса угла делит угол пополам.

Для того, чтобы учащиеся сознательно усвоили необходимость каждого признака и их достаточность для определения понятия биссектрисы угла, следует предложить слайды, на которых бы иллюстрировались объекты, обладающие только лишь свойствами 1 и 2 (рис …), лишь свойствами 1 и 3 (рис…), лишь свойствами 2 и 3 (рис…), свойствами 1 и 2 и 3 (рис…).

Компьютер может сыграть роль эффективного средства активного диалога в работе учащихся с моделями геометрических фигур. Педагогическое программное средство, реализующее эту функцию компьютера, должно удовлетворять следующим требованиям:

- давать возможность учащемуся контролировать динамику процесса конструирования модели, задавая режимы изменения параметров;

- давать возможность управлять позицией наблюдателя при зрительном исследовании модели;

- давать возможность отбора наиболее приемлемых с психолого-педагогической точки зрения соотношения размеров модели из большого числа экспериментальных данных;

- позволять выборочно стирать изображение;

- давать возможность учащимся достраивать модель;

- проводить дублирование изображений;

- позволять проводить анализ корректности вводимых данных;

- сопровождать модели интеллектуализированным диалогом, в ходе которого будут вводиться термины, обозначающие элементы модели, давать поясняющие сообщения.

Важное место в работе с моделями занимают упражнения на развертки различных фигур. Многие программы выводят различные плоскостные конфигурации, а учащимся предлагается узнать, какие из них являются развертками той или иной фигуры.

Пространственные соотношения между реальными объектами (положение и ориентация объектов в пространстве и их размеры) изучаются с помощью геометрических моделей. Для визуализации геометрических моделей используются идеализированные геометрические объекты (точка, линия, плоскость и др.), которые в отличие от реальных объектов обладают набором только наиболее существенных свойств. Так геометрическая точка отличается от реальной точки на чертеже тем, что имеет только координаты, но не имеет размеров, геометрическая линия не имеет ширины, геометрическая плоскость - толщины и т.д. В школьном курсе геометрии не только изучаются различные геометрические модели (теоремы), но рассматривается процесс их построения. Важное место занимают геометрические построения с использованием линейки и циркуля. Для создания геометрических моделей на компьютере удобно использовать системы автоматизированного проектирования (САПР). В качестве примера выполнения геометрического построения рассмотрим задачу о построении перпендикуляра к прямой.

Задача. Даны прямая и точка на ней. Построить прямую через данную точку и перпендикулярную к данной прямой. Формальная модель. Построим формальную модель процесса геометрического построения, зафиксировав его в форме алгоритма:

1. Построить прямую a и точку M на ней.

2. На равных расстояниях от точки М построить на прямой точки А и В.

3. Построить две окружности с центрами в точках A и В с радиусом АВ.

4. Через точки пересечения окружностей P и Q провести прямую. Данная прямая пройдет через точку М и будет являться перпендикуляром к прямой a.

Компьютерная модель. Реализуем геометрическое построение в соответствие с разработанным алгоритмом с использованием системы КОМПАС-3D.

Построение перпендикуляра к заданной прямой.

1

Построить прямую a. На панели Геометрические построения щелкнуть по кнопке Ввод отрезка и с использованием ручного ввода параметров задать координаты начальной точки p1 (10,0) и конечной точки p2 (70,0).

2

Построить точки M, A и B на прямой a. На панели Геометрические построения щелкнуть по кнопке Ввод точки и с использованием ручного ввода параметров задать координаты точки М (40,0), точки А (25,0) и точки B (55,0).

3

Построить окружность с центром в точке A и с радиусом АВ. На панели Геометрические построения щелкнуть по кнопке Ввод окружности и с использованием ручного ввода параметров задать координаты центра (25,0).

Задать радиус окружности с использованием Геометрического калькулятора, для этого щелкнуть правой клавишей мыши в поле Радиус окружности и в появившемся меню выбрать пункт Между двумя точками. После того как курсор примет форму мишени, щелкнуть по точкам A и B. Окружность с заданным радиусом будет построена.

4

Аналогично построить окружность с центром в точке В и с радиусом АВ.

5

Соединить точки пересечения окружностей отрезком. Задать начальную и конечную точки отрезка с использованием Геометрического калькулятора, выбрав пункт меню Пересечение.

6

Ввести на чертеже обозначения. Выбрать на Панели управления кнопку Размеры и технологические обозначения, и на появившейся панели щелкнуть по кнопке Ввод текста. Ввести обозначения.

7

Алгоритм построения перпендикуляра к заданной точке прямой выполнен.

8

Сохранить чертеж.

Исследование модели. С помощью геометрических теорем необходимо доказать, что построенный отрезок PQ действительно является перпендикуляром к прямой a.

Задача. Дан неразвернутый угол A. Построить его биссектрису. Формальная модель. Построим формальную модель процесса геометрического построения, зафиксировав его в форме алгоритма:

1. Построить окружность произвольного радиуса с центром в вершине заданного угла А, которая пересечет стороны угла в точках В и С.

2. Построить две окружности радиуса ВС с центрами в точках B и C. Точку пересечения окружностей внутри угла обозначить буквой Е.

3. Через вершину угла А и точку пересечения окружностей Е провести прямую. Луч АЕ - биссектриса заданного угла.

Компьютерная модель. Реализуем геометрическое построение в соответствие с разработанным алгоритмом с использованием системы КОМПАС-3D.

Построение биссектрисы неразвернутого угла.

1

Построить неразвернутый угол и окружность с центром в точке А (вершине угла). На панели Геометрические построения щелкнуть по кнопке Ввод отрезка и построить два отрезка, выходящих из точки А. Щелкнуть по кнопке Ввод окружности и в автоматическом режиме построить окружность произвольного радиуса с центром в точке А.

2

Ввести обозначения точек пересечения окружности. Активизировать панель Размеры и технологические обозначения, щелкнуть по кнопке Ввод текста и ввести обозначения вершины угла А и точек пересечения окружности со сторонами угла В и С.

3

Построить две окружности одинакового радиуса с центрами в точках В и С. Задать радиусы окружностей в ручном режиме. Точку пересечения окружностей обозначить E.

4

Через вершину угла А и точку пересечения окружностей Е провести прямую. Щелкнуть по кнопке Ввод отрезка и в автоматическом режиме последовательно указать точки А и Е.

7

Алгоритм построения биссектрисы неразвернутого угла выполнен.

8

Сохранить чертеж.

Исследование модели. С помощью геометрических теорем необходимо доказать, что построенный луч АЕ действительно является биссектрисой угла А.

Таким образом, демонстрируется возможность использования средств ИКТ для решения геометрических задач.

2.3 Организация деятельности учащихся по формированию геометрической грамотности

Каждый педагог, использующий мультимедиа, неминуемо столкнется с проблемой модификации методов преподавания, направленной на органичное включение компьютера в структуру урока. В простейшем варианте класс должен быть подготовлен к наиболее эффективному усвоению демонстрируемого материала. Так же, как и в любой педагогической стратегии, компьютерное обучение требует специальной подготовки к занятиям, организации процессов взаимодействия и логического завершения предпринимаемой работы. Поскольку не существует какого-то одного способа построения такой модели обучения, важно, чтобы учитель заранее планировал типы учебных ситуаций, в которых будет использоваться компьютер.

ЭВМ не может заменить учителя в том, что ему самому не под силу. Боле того, она не может выполнить многие из тех функций, которые осуществляют учителя. Вместе с тем бывает, что учитель не успевает оказать необходимую индивидуальную помощь ученикам в соответствии с требованиями учебного процесса.

Если одновременно с этим другие ученики выполняют иные типы работы или изучают какую-то другую часть той же самой темы, то учителю становится значительно труднее организовать учебный процесс. Более того, ему приходится решать, чему отдавать предпочтение.

В рамках школьных программ существует немало тем, а в школьной методике и стратегиях обучения много аспектов, которые могут быть обогащены за счет привлечения содержания, моделируемого при помощи компьютера. При этом как компьютер, так и программный продукт должны отвечать требованиям педагогической среды и обеспечивать контролируемое обучение. Благодаря компьютеру учитель должен получить возможность более совершенного управления процессом обучения, в котором уменьшается степень инструктивного введения в учебные ситуации и необходимость пассивных иллюстраций примерами.

Таким образом, в работе сделана попытка исследовать не «административную среду» использования ИКТ, а взаимодействие учителя и ученика, сам процесс освоения содержания, обучающие стратегии и возможности, фундаментальные основания для выяснения того, что привносит компьютер в школьную практику нового и эффективного, чего в ней никогда не было. Рассмотрение всех этих вопросов основывается на убеждении авторов в том, что не сам компьютер диктует методы и содержание обучения, но что он адекватно и эффективно включается в программы обучения, обеспечивая полноценную организацию учебой деятельности.

Использование компьютеров имеет важное значение для совершенствования учебной деятельности и работы самого учителя. Это касается не только ознакомления с определенной областью знания, но и конкретного содержания. Подобные цели могут формулироваться разными способами, однако, как только они определены, согласованы и приняты, возникает необходимость в строгом описании соответствующего предметного содержания, а затем обучающих приемов и учебных ситуаций. Задачей педагога в этом случае становится интегрирование отобранных элементов в некоторую целостную программу учебной работы, которая могла бы одновременно обеспечить фронтальные и индивидуальные формы усвоения. В обязанности учителя, кроме того, входит умение оценить разрабатываемый курс, определить его сильные и слабые стороны. Мерой эффективности курса при этом может служить индивидуальный уровень овладения каждым школьником целями и планируемыми результатами подготовленной программы.

Правильно указывая на то обстоятельство, что именно учитель решает, какая часть курса должна осваиваться с помощью ИКТ, авторы подчеркивают необходимость предварительной апробации «обучающего пакета», поскольку реально оценить эффективность нового содержания и средств овладения этим содержанием вне педагогической практики не представляется возможным. И хотя информированность педагога относительно имеющегося программного продукта может разрешить немало вопросов, однако однозначная оценка эффективности разрабатываемого ППП зависит, прежде всего, от наличия адекватных действий со стороны учащихся. Является ли конкретная программа наилучшим способом репрезентации того или иного содержания? Выигрывает ли запрограммированная задача или тема по сравнению с другой, более традиционной формой представления? Открываются ли перед учениками возможности моделирования ситуаций, которые не могут быть построены непосредственно, или же возможности исследования и процессов, которые не могут быть воспроизведены в условиях урока и кабинета? Этими и подобными вопросами должен задаваться учитель, перед которым стоит задача оценки конкретной программы обучения как эффективного «обучающего пакета».


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.