Параллельные прямые в курсе основной школы
Исследование истории развития теории о параллельных прямых, геометрии Евклида, Ламберта, Римана, Лежандра и Лобачевского. Анализ методики знакомства учащихся со свойствами углов равностороннего треугольника, геометрическими фигурами в основной школе.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.06.2012 |
Размер файла | 602,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru/
Содержание
Введение
Глава 1. Параллельные прямые в курсе основной школы
1.1 Геометрия Евклида
1.2 Попытки доказательства V постулата Евклида
1.3 Джироламо Саккери
1.4 Ламберт
1.5 А.М.Лежандр
1.6 Янош Больяи
1.7 Геометрия Римана
1.8 Геометрия Лобачевского
Глава 2. Методика преподавания темы «Параллельные прямые»
2.1 Параллельные прямые
2.2 Углы при параллельных прямых
2.3 Признаки параллельных прямых
2.4 Признаки не параллельности прямых
2.5 Углы с взаимно параллельными сторонами, углы с взаимно перпендикулярными сторонами
2.6 Сумма углов треугольника
Заключение
Список использованной литературы
Приложения
Введение
Геометрия - это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. Древнегреческий ученый Эвдем Родосский в IV веке до нашей эры писал: «Геометрия была открыта египтянами, и возникла при измерении земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавшей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека».
Многие первоначальные геометрические сведения получили также шумеро-вавилонские, китайские и другие ученые древнейших времен. Устанавливались они сначала только опытным путем, без логических доказательств.
Как наука, геометрия впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны.
В III веке до нашей эры греческий ученый Евклид привел в систему известные ему геометрические сведения в большом сочинении «Начала». Эта книга более двух тысяч лет служила учебником геометрии во всем мире. Но кроме геометрии, которую изучают в школе (геометрия Евклида или употребительная геометрия), существует еще одна геометрия, геометрия Лобачевского.
Эта геометрия существенно отличается от евклидовой, например, в ней утверждается, что через данную точку можно провести бесконечно много прямых, параллельных данной прямой, что сумма углов треугольника меньше 180?. В геометрии Лобачевского не существует прямоугольников, подобных треугольников и т.д.
Неевклидова геометрия, появилась вследствие долгих попыток доказать V постулат Евклида - аксиому параллельных прямых. Эта геометрия во многом удивительна, необычна и соответствует нашим обычным представлениям о реальном мире. Но в логическом отношении данная геометрия не уступает геометрии Евклида.
Учащиеся, приступая к систематическому изучению курсу геометрии, уже владеют некоторым запасом геометрических знаний. Знания эти по преимуществу почерпнуты или непосредственно из опыта или восприняты ими интуитивно, путем сопоставления ряда аналогичных или уже знакомых им геометрических фактов.
Преподаватель должен суметь:
надлежащим образом использовать накопленные учащимися знания для развертывания перед ними школьного логического курса геометрии, в котором логическое доказательство выдвигается на первое место, где интуиция играет роль разведки, а опыт отходит на задний план;
приучить учащихся находить новые геометрические факты;
подкреплять при рассмотрении отдельных вопросов теоретические выводы иллюстрацией их практической ценности и тем самым находить тесную связку теории с практикой;
использовать явления окружающей действительности, опыт и интуицию как стимул для постановки вопроса, отнюдь не заменяя логическое доказательство опытом;
приучать учащихся усматривать взаимозависимость между отдельными геометрическими фактами;
развивать у учащихся наблюдательность, строгость и последовательность в суждениях, любовь к исследованию;
научить учащихся пользоваться учебником, вести четкую конспективную запись, выполнять опрятно и точно чертежи и быть всегда готовым к ответу - вот ответственная и сложная задача преподавателя, начиная с первых же занятий по геометрии.
В своей работе преподаватель всегда должен помнить, что учащиеся должны научиться доказывать, но отнюдь не заучивать непонятное доказательство. Необходимо вести работу так, чтобы учащиеся умели четко отличать при разборе теоремы, то, что дано, и то, что требуется доказать. Всякое доказательство требует от учащихся сосредоточенности внимания и напряжения мысли, поэтому нельзя перегружать урок разбором и доказательством более чем двух-трех теорем.
Юнг в своей книге «Как преподавать геометрию» писал: «если геометрию изучать так, чтобы учащийся сам делал открытия, то он почувствует ее жизнь».
Актуальность данной темы заключается в том, что при изучении темы «Параллельные прямые» не обращаются к теории вопроса, что является главным для изучения всей геометрии. У ребят возникает больший интерес к предмету и изучению тем, если они знают немного из истории, они стремятся к познанию все новых и новых сведений, они развиваются всесторонне.
Объект: обучения геометрическим фигурам (параллельным прямым) в основной школе.
Предмет: изучение и формирование понятия параллельные прямые.
Цель: изучение истории, теории вопроса и методики изучения понятия параллельные прямые.
Задачи:
1. Изучение литературы по истории вопроса.
3 Изучение различных подходов (систем) к понятию.
4 Изучение методической литературы по формированию понятия параллельные прямые.
5 Применение теоретических знаний в практике.
Методы исследования:
Библиографический -- изучение литературы.
Теоретический -- анализ и синтез.
Эмпирический -- изучение литературы, изучение и обобщение педагогического опыта.
Глава 1. Параллельные прямые в курсе основной школы
1.1 Геометрия Евклида
Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» греческое, в переводе означает «землемерие».
Люди очень рано столкнулись с необходимостью измерять земельные участки. Это требовало определенного запаса геометрических и арифметических знаний. Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.
Геометрия стала наукой только после того, как в ней начали систематически применять логические доказательства, начали выводить геометрические предложения не только путем непосредственных измерений, но и путем умозаключений, путем вывода одного положения из другого, и устанавливать их в общем виде. Обычно этот переворот в геометрии связывают с именем ученого и философа VI века до нашей эры Пифагора Самосского.
Однако все новые проблемы и созданные в связи с ними теории привели к тому, что совершенствовались сами способы математических доказательств, возрастала потребность создания стройной логической системы в геометрии.
Не позднее IV века до нашей эры греческие математики при построении геометрии выбирали некоторые предложения, которые принимались без доказательства, а все остальные предложения выводили из них строго логически. Предложения, принятые без доказательства, назывались аксиомами и постулатами.
Наиболее совершенным образцом такой теории на протяжении более 2 тысяч лет служили «Начала» Евклида, написанные около 300 года до нашей эры.
О жизни Евклида (около 365 г. до нашей эры -- 300 г. до нашей эры) почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».
Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», -- ответил ему ученый. Так в виде легенды дошло до нас это, ставшее крылатым, выражение.
Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз -- Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное -- великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии -- столице Египта -- математическую школу и написал для ее учеников свой фундаментальный труд.
Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенных под общим названием «Начала» -- главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.
Предшественники Евклида -- Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.
Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из 13 книг, построенных по единой логической схеме.
Каждая из книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений принимаемых без доказательства, строится вся система геометрии.
Первые четыре книги "Начал" посвящены геометрии на плоскости, и в них изучаются основные свойства прямолинейных фигур и окружностей. Книге I предпосланы определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: "Точка есть то, что не имеет частей". "Линия же - длина без ширины". "Прямая линия есть та, которая равно расположена по отношению точкам на ней". "Поверхность есть то, что имеет только длину и ширину" и т.д.
В качестве постулатов Евклид выбрал такие предложения, в которых утверждалось то, что можно проверить простейшими построениями с помощью циркуля и линейки. Евклид принял также некоторые общие предложения-аксиомы. На основе таких постулатов и аксиом Евклид строго и систематично развил всю планиметрию.
Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства Евклидова пространства и его геометрию, отличную от неевклидовых геометрий.
За определениями следуют пять постулатов: "Допустим:
1) что от всякой точки до всякой точки можно провести прямую линию;
2) и что ограниченную прямую можно непрерывно продолжить по прямой;
3) и что из всякого центра и всяким раствором может быть описан круг;
4) и что все прямые углы равны между собой;
5) и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых."
Три первых постулата обеспечивают существование прямой и окружности. Пятый, так называемый постулат о параллельных - самый знаменитый. Он всегда интриговал математиков, которые пытались вывести его из четырех предыдущих или вообще отбросить, до тех пор, когда в XIX в. обнаружилось, что можно построить другие, неевклидовы геометрии и что пятый постулат имеет право на существование.
Иногда IV и V постулаты относят к числу аксиом. Поэтому пятый постулат иногда называют XI аксиомой. По какому принципу одни утверждения относятся к постулатам, а другие к аксиомам, неизвестно.
Никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже с древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.
Возможно, что уже сам Евклид пытался доказать постулат о параллельных. В пользу этого говорит то обстоятельство, что первые 28 предложений «Начал» не опираются на V постулат. Евклид как бы старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым.
Затем Евклид сформулировал аксиомы, которые в противоположность постулатам, справедливым только для геометрии, применимы вообще ко всем наукам.
Аксиомы
I. Равные порознь третьему равны между собой.
II. И если к ним прибавим равные, то получим равные.
III. И если от равных отнимем равные, то получим равные.
IV. И если к неравным прибавим равные, то получим неравные.
V. И если удвоим равные, то получим равные.
VI. И половины равных равны между собой.
VII. И совмещающиеся равны.
VIII. И целое больше части.
IX. И две прямые не могут заключать пространства.
Книги I--IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII--IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах X--XII содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в X книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.
«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием Евклидовой геометрии.
Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. До двадцатого века книга считалась основным учебником по геометрии не только для школ, но и для университетов.
«Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6-7 изданий. С 1482г. "Начала" Евклида выдержали более 500 изд. на всех языках мира «Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Первые подлинники были напечатаны в 1533 году в Базеле. Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом.
Можно смело утверждать, что Евклид заложил основы не только геометрии, но и всей античной математики.
Лишь в девятнадцатом веке исследования основ геометрии поднялись на новую, более высокую ступень. Удалось выяснить, что Евклид перечислил далеко не все аксиомы, которые на самом деле нужны для построения геометрии. В действительности при доказательствах ученый ими пользовался, но не сформулировал.
Тем не менее, все выше сказанное нисколько не умаляет роли Евклида, первого показавшего, как можно и как нужно строить математическую теорию. Он создал дедуктивный метод, прочно вошедший в математику. А значит, все последующие математики в известной степени являются учениками Евклида.
1.2 Попытки доказательства V постулата Евклида
параллельный геометрия учащийся треугольник
Первые 28 предложений «Начал» не опираются на V постулат, возможно Евклид старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым.
Попытки доказать пятый постулат продолжались с тех пор в течение 2000 лет. Их предпринимало множество ученых. Вот неполный перечень:
греки Птолемей (2 в. н. э., тот самый Птолемей, "которого система") и Прокл (5 в.),
араб ал-Хайсам (10 в.),
перс (или таджик) Омар Хайям (11 в. - начало 12 в., тот самый Хайям, который известен как великий поэт),
азербайджанец ат-Туси (13 в.),
немец Клавий-Шлюссель (1514; здесь и дальше дата работы),
итальянцы Катальди (1603), Борелли (1658) и Витале (1680),
англичанин Валлис (1663),
итальянец Саккери (1733),
немец Ламберт (1766),
французы Бертран (1778) и Лежандр (1794, 1823),
русский Гурьев (1798).
Все их попытки сводились к тому, что пятый постулат выводился из какого-нибудь другого положения. При этом многие не замечали этого, считая, что доказательство им удалось. Другие, более проникновенные и критичные, явно формулировали то положение, из которого выводили пятый постулат, как это сделал, например, Омар Хайям.
Одни математики старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату.
Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением. Так, например, в XI веке Омар Хайям ввел вместо V постулата «принцип», согласно которому две лежащие в одной плоскости сходящиеся прямые пересекаются и не могут расходиться в направлении схождения. С помощью этого принципа Хайям доказывает, что в четырехугольнике ABCD, в котором углы при основании А и В - прямые и стороны АС, ВD равны, углы С и D так же прямые, а из этого предложения о существовании прямоугольника выводится V постулат. Рассуждения Хайяма получили оригинальное развитие в XIII веке у Насирэдинна ат-Туси, работы которого в свою очередь стимулировали исследования Д. Валлиса. В 1663 году Валлис доказал постулат о параллельных, исходя из явного допущения, что для каждой фигуры существует подобная ей фигура произвольной величины. Это допущение он считал вытекающим из существа пространственных отношений.
С логической точки зрения результаты Хайяма или Валлиса лишь выявляли равносильность V постулата и некоторых других предложений геометрии. Так, Хайям, по существу, установил эквивалентность постулата и предложения о сумме углов треугольника, а Валлис показал, что не только из V постулата можно вывести учение о подобии, но и обратно - их евклидова учения о подобии следует V постулат.
1.3 Джироламо Саккери
Критика евклидовского обоснования геометрии, продолжалась на протяжении нескольких веков и ставшая особенно острой в 19 столетии, привела к попыткам нового дедуктивного построения геометрии, отвечающего современным требованиям науки.
Одним из ученых, предвосхитивших неевклидову геометрию, был итальянский монах Джироламо Саккери (1667 - 1733), преподававший грамматику в иезуитской коллегии в Милане. Здесь под влиянием Джованни Чевы (Джованни Чева (1648 - 1734) - итальянский инженер-гидравлик и экономист) Саккери заинтересовался математикой и стал серьезно заниматься ею. Впоследствии он преподавал математику в университете города Павши. На последнем году своей жизни Саккери опубликовал (на латинском языке) книгу под заглавием «Евклид, очищенный от всех пятен». В ней он поставил задачу исправить все недостатки («пятна») «Начал» Евклида, в первую очередь доказать V постулат. Саккери решительнее и дальше своих предшественников сделал попытку доказать этот постулат от противного.
Рассматривая четырехугольник (рис. 1), носящий его имя, Саккери стремиться доказать, что гипотезы тупого и острого углов приводит к логическим противоречиям и что остается лишь гипотеза прямого угла, из которого вытекает V постулат.
1. Он легко опровергает гипотезу тупого угла, он доказывает, что:
геометрическое место точек плоскости, равноотстоящих от данной прямой по одну сторону, не является прямой или окружностью, а другой линией (которую Лобачевский впоследствии назвал эквидистантой, то есть «равноотстоящей»);
2. две прямые, содержащиеся в одной плоскости (рис. 2), либо пересекаются в одной точке (такие прямые Лобачевский назвал «сходящимися»), либо не пересекаются, имея общий перпендикуляр, по обе стороны от которого они друг от друга удаляются («расходящиеся прямые» в терминологии Лобачевского), либо не пересекаются, удаляясь друг от друга в одном направлении и асимптотически приближаясь к другому (параллельные Лобачевского)
Если бы Саккери пользовался лишь логическими выводами, строгой дедукцией, то никакого противоречия он в указанных выше предложениях он не нашел бы. Однако, будучи предупрежден о невозможности того, что для евклидова постулата не имелось доказательства, Саккери для опровержения гипотезы острого угла прибег к утверждению чисто интуитивного характера: существование асимптотических прямых якобы «противоречит природе прямой линии». Заслуга Саккери состоит, разумеется, не в конечном его установлении промежуточных предложений, выведенных им на основе гипотезы острого угла, которые спустя 100 лет легли в основу новой неевклидовой геометрии Лобачевского.
1.4 Ламберт
Идеи Ламберта, развитые им в сочинении «теория параллельных линий» (1766г.), близко примыкают к соображениям Саккери.
Он рассматривает четырехугольник с тремя прямыми углами. Относительно четвертого угла так же возникают три гипотезы: этот угол прямой, тупой или острый. Доказав эквивалентность пятого постулата гипотезе прямого угла и сведя к противоречию гипотезу тупого угла, Ламберт, подобно Саккери, вынужден заниматься гипотезой острого угла. Она приводит Ламберта к сложной геометрической системе, в которой ему не удалось встретить логического противоречия. Ламберт нигде в своем сочинении не утверждает, что V постулат им доказан, и приходит к твердому заключению, что и все другие попытки в этом направлении не привели к цели.
«Доказательства евклидова постулата, - пишет Ламберт, - могут быть доведены столь далеко, что остается, по-видимому, ничтожная мелочь. Но при тщательном анализе оказывается, что в этой кажущейся мелочи и заключается вся суть вопроса; обыкновенно она содержит либо доказываемое предложение, либо равносильный ему постулат».
Более того, развивая систему гипотезы острого угла, Ламберт обнаруживает аналогию этой системы со сферической геометрией и в этом усматривает возможность ее существования.
«Я склонен даже думать, что третья гипотеза справедлива на какой-нибудь мнимой сфере. Должна же быть причина, вследствие которой она на плоскости далеко не поддается опровержению, как это легко может быть сделано со второй гипотезой».
1.5 А.М.Лежандра
Французский математик и педагог А. М. Лежандр является автором замечательного школьного учебника "Начала геометрии", вышедшего в свет первым изданием в 1794 году и переиздававшегося при жизни автора 14 раз. Лежандр весьма существенно менял свою книгу от издания к изданию. При этом больше всего его заботила теория параллельных. Во всех прижизненных изданиях "Начал геометрии", кроме 9, 10 и 11-го, Лежандр доказывал V постулат, меняя, однако, доказательства от издания к изданию. Объяснялось это тем, что каждый раз после выхода очередного издания Лежандр обнаруживал ошибку в опубликованном доказательстве (точнее, не ошибку, а неявное использование утверждения, эквивалентного V постулату). Безупречного доказательства V постулата Лежандр так и не получил (и, как будет ясно из сказанного ниже, не мог получить). Однако его исследования очень поучительны и, что самое главное, вскрывают глубокие связи между V постулатом и другими предложениями. Особенно важны три замечательные теоремы Лежандра о связи V постулата с теоремами о сумме углов треугольника. Рассмотрим их подробнее. Доказательства этих теорем проводятся без использования V постулата (или аксиомы о параллельных).
Теорема 1. Во всяком треугольнике сумма внутренних углов не превосходит 180°.
Доказательство. Предположим, что наша теорема неверна, т. е. что существует треугольник ABA1, сумма углов которого больше 180°. Продолжим сторону AA1 этого треугольника и построим на прямой AA1 ряд треугольников A1B1A2, A2B2A3, ..., An-1Bn-1An, AnBnAn+1, равных треугольнику ABA1; точки B и B1, B1 и B2, ..., Bn-1 и Bn соединим отрезками (см. рис.); заметьте, мы не утверждаем, что отрезки BB1, B1B2, ..., Bn-1Bn составляют прямую линию, - доказать это, не опираясь на V постулат, невозможно).
Так на рисунке L1+L2+L3>1800, а L1+L2'+L3=1800, то L2'<L2; таким образом стороны А1В и А1В1 треугольника А1ВВ1 соответственно равны сторонам ВА1 и ВА треугольника АВА1, а заключенный между ними угол А1 меньше угла В. отсюда вытекает, что АА1>ВВ1 (заметим, что теорема о двух треугольниках, имеющих по две равные стороны, во всех учебниках геометрии доказывается до аксиомы параллельности, следовательно не зависит от V постулата).
Но, очевидно, не только Д АВА1=ДА1 А1В1А2=…=ДАnВnАn+1, но и ДВА1В1=ДВ1А2В2=…= ДВn-1AnBn. Поэтому, если положить АА1-ВВ1=а, то получим ААn -(ВВ1+В1В2+…+В n-1Bn)= na. Выбрав теперь число n настолько большим, что na>2АВ, мы найдем, что (АВ+ВВ1+В1В2+…+ В n-1Bn+BnAn)-АAn=АВ+ BnAn- na<0, т.е. что отрезок ААn больше ломаной АВВ1… BnAn, соединяющей его концы. Но последнее невозможно (причем невозможность эта устанавливается без обращения к аксиоме параллельности). Полученное противоречие и доказывает теорему.
Теорема 2. Если у какого-либо одного треугольника сумма углов равна 180°, то она равна 180° и у любого треугольника.
Доказательство. Установим прежде всего, что если сумма углов прямоугольного треугольника ABC равна 180°, то сумма углов прямоугольного треугольника ABC1, катет BC1 которого равен 2BC (см.рис.), также равна 180°.
Для доказательства построим на стороне АС треугольника АСВ', равный АСВ (причем LАСВ=LВ'СА, LВСА=LСАВ'); в таком случае все углы четырехугольника АВСВ' будут прямыми( так как сумма острых углов треугольника АВС по предположению равна 900). Продолжив теперь отрезок АВ' на расстояние В'C'=АВ' и соединив С' с С1, получим четырехугольник В'СС1С', равный АВС1С' с четырьмя прямыми углами; диагональ АС1 разбивает его на два прямоугольных треугольника, сумма углов каждого из которых равна 1800.
Далее покажем, что если в одном прямоугольном треугольнике АВС сумма углов равна 1800, то сумма углов и любого другого прямоугольного треугольника А1В1С1 равна 1800. мы можем считать, что оба катета треугольника АВС больше соответствующих катетов треугольника А1В1С1; если бы это было не так, то мы добились бы нужного нам положения вещей, последовательно удвоив несколько раз катеты треугольника АВС (ведь по доказанному выше, при удвоении одного из катетов прямоугольного треугольника с сумой углов 1800 сумма его углов не меняется). Наложим теперь треугольник А1В1С1 на треугольник АВС так, чтобы у них совпали прямые углы (см. рис.), и проведем отрезок АС1.
По теореме 1, сумма углов каждого из треугольников ABC1 и AC1C не больше 180°; если хотя бы у одного из них сумма углов была бы меньше 180°, то и сумма углов прямоугольного треугольника ABC (получающаяся, если из суммы всех углов треугольников ABC1 и ACC1 вычесть 180°) была бы меньше 180°, что противоречит сделанному предположению. Поэтому сумма углов треугольника ABC1 также равна 180°. Отсюда, в точности так же как выше, заключаем, что в каждом из треугольников A1BC1 и A1AC1 сумма углов равна 180°.
Теперь уже нетрудно доказать теорему 2. Пусть сумма углов некоторого треугольника ABC равна 180°. Опустив на его большую сторону высоту BD, разобьем его на два прямоугольных треугольника ABD и CBD (см. рис. а).
Сумма углов каждого из треугольников ABD, CBD также равна 180° (т. к. если бы сумма острых углов хотя бы одного из треугольников ABD и CBD была меньше 90°, то сумма углов треугольника ABC также была бы меньше 180°). По доказанному выше, отсюда следует, что сумма острых углов любого прямоугольного треугольника равна 90°. Но каждый треугольник A1B1C1 можно разбить на два прямоугольных треугольника высотой, опущенной на большую сторону (см. рис.б). Так как сумма острых углов каждого из этих треугольников (A1B1D1 и B1C1D1 на рис. б) равна 90°, то сумма углов треугольника A1B1C1 равна 180°, что и завершает доказательство теоремы.
Теорема 3. Если сумма углов любого треугольника равна 180°, то справедлив V постулат.
Пусть A - точка, лежащая вне прямой DD' (см. рис.) . Опустим из точки A перпендикуляр AC на прямую DD' и проведем через точку A прямую BB', перпендикулярную к AC. Ясно, что прямые BB' и DD' не пересекаются (иначе образовался бы треугольник с суммой углов, большей 180°).
Надо доказать, что любая другая прямая MN, проходящая через точку А, пересекается с прямой DD'. Из двух лучей АM, АN выберем тот, который с отрезком АС составляет острый угол; пусть это будет луч АN и пусть (рис. в низу на с.22) точка В и N лежат по одну сторону от прямой АС (в противном случае можно было бы поменять обозначения точек В и В'. Угол ВАN обозначим через а.
рис.1 рис.2
Отложим на луче СD отрезок СР1=СА (рис. 2). Тогда в равнобедренном прямоугольном треугольнике АСР1 каждый из углов LА, LР1=450=1/2*900 (ведь, по предположению, сумма углов треугольника равна 1800). Отложим теперь на прямой СD отрезок Р1Р2= Р1А. тогда в равнобедренном треугольнике АР1Р2каждый из углов LР1АР2, LР2, как легко подсчитать, равен 1/2*450=1/4*900. Затем построим точку Р3 прямой СD (так, чтобы АР2= Р2Р3) и т.д. В результате получим лучи АР1,АР2, АР3…, каждый из которых пересекает прямую СD. При этом LВАР1=1/2*900, LВАР2=1/4*900, LВАР3=1/8*900, …Ясно, что после конечного числа шагов получим такой луч АРn (пересекающий прямую DD'), для которого LВАРn=1/2n*900<а. этим и завершается доказательство теоремы.
Как известно из V постулата (или аксиомы параллельности) вытекает, что сумма углов любого треугольника равна 1800.
Таким образом, теорема 3 показывает, что утверждение «сумма углов треугольника равна 1800 эквивалентно V постулату (эта эквивалентность имеет место только при выполнении остальных аксиом геометрии Евклида).
В заключение приведем одно из доказательств V постулата, помещенных Лежандром в его книге "Начала геометрии". Для доказательства V постулата нужно лишь установить, что сумма углов треугольника не может быть меньше 180°: ведь тогда из теоремы 1 будет вытекать, что сумма углов треугольника в точности равна 180°, а потому, согласно теореме 3, будет справедлив V постулат. Доказательство проводится "от противного": пусть существует треугольник ABC, сумма углов которого меньше 180°, скажем, равна 180°- б (см. рис.).
Построим на стороне BC вне треугольника ABC треугольник BCD, равный ABC, и проведем через точку D прямую, пересекающую стороны AB и AC угла BAC в точках M и N. В таком случае сумма углов треугольника BCD также равна 180°- б, а у треугольников BDM и CDN суммы углов не превосходят 180° (теорема 1).
Поэтому сумма 12 углов четырех треугольников: ABC, BCD, BDM и CDN не превосходит 720°-2б. Но суммы трех углов при точках B, C и D равны 180°; поэтому сумма оставшихся трех углов при вершинах A, M и N не превосходит (720°-2б) - 540° = 180°- 2б. Таким образом, мы построили треугольник AMN, сумма угол которого не превосходит 180°-2б. Далее таким же способом строим треугольник, сумма углов которого не превосходит 180°- 4б, затем треугольник, сумма углов которого не превосходит 180°- 8б, и т. д. Но таким путем мы, в конце концов, придем к треугольнику с отрицательной суммой углов, - а такого треугольника явно не может быть! Полученное противоречие и доказывает, что сумма углов любого треугольника равна 180°, а значит (теорема 3), V постулат имеет место.
Ошибочность этого доказательства состоит в том, что Лежандр, не оговаривая этого явно, пользуется следующим утверждением: через любую точку D, взятую внутри угла CAB, можно провести прямую, пересекающую обе стороны этого угла. Но это предложение эквивалентно самому V постулату: его так же не удается доказать, исходя из остальных аксиом, как и V постулат.
Неевклидова геометрия Лобачевского и абсолютная геометрия. Многие попытки доказательства V постулата проводились по схеме "доказательства от противного", т. е. предполагалось, что V постулат не имеет места, и делался ряд выводов, имеющих место в этом случае. Если бы при этом удалось прийти к противоречию, то V постулат был бы доказан. По этому пути шли упомянутые выше Хасан ибн ал-Хайсам и Омар Хайям, а также во многом следовавшие за Хайямом азербайджанский математик XIII века Насир Ад-Дин ат-Туси, итальянский математик XVII-XVIII веков Джироламо Саккери и немецкий математик XVIII века Иоганн Генрих Ламберт.
При этом было накоплено много фактов, которые имели бы место в геометрии, в которой верны все аксиомы евклидовой геометрии, кроме аксиомы о параллельности, а последняя неверна. Особенно много удивительных теорем, которые имели бы место в такой "геометрии", если бы только последняя была возможна, получил И.Г. Ламберт. Однако никто из перечисленных выше математиков не допускал и мысли о том, что, помимо геометрии Евклида, возможна другая непротиворечивая геометрия. В большинстве случаев все их построения завершались тем, что явно или неявно применялась аксиома, содержащая утверждение, равносильное V постулату, в результате чего и обнаруживалось противоречие. Однако сегодня мы ценим упомянутые исследования как заложившие начала неевклидовой геометрии Лобачевского. Под этим названием понимается та совокупность теорем, которая может быть выведена из системы аксиом, получаемой, если заменить аксиому параллельных евклидовой геометрии противоположным утверждением: в плоскости через точку A, не принадлежащую прямой a, можно провести более одной прямой, не пересекающейся с a (см. рис.).
Эта геометрическая система носит имя Николая Ивановича Лобачевского, профессора и ректора Казанского университета. Независимо от него, существование новой геометрии установили великий немецкий математик Карл Фридрих Гаусс и замечательный венгерский математик Янош Бойяи, сун Фаркаша Бойяи. Названные три автора первоначально шли тем путем, который мы указали выше. Стремясь доказать V постулат от противного, они глубоко развили аксиоматическую систему, получающуюся при отрицании истинности V постулата, но не обнаружили при этом никаких противоречий. Однако, в противоположность своим предшественникам, эти три великих математика сделали из полученных ими результатов вывод о существовании геометрической системы, отличной от евклидовой.
При этом они продолжали исследовать новую геометрию, получая дальнейшие относящиеся к ней теоремы. По-видимому, Гаусс владел основными идеями новой геометрии уже в начале 10-х годов прошлого века; однако, боясь быть непонятным, он никому не сообщил о своем замечательном открытии. Мужественнее поступили Н.И. Лобачевский и Я. Бойяи, которые опубликовали первые работы, излагающие существо неевклидовой геометрии, и отстаивали свои идеи. Первая публикация в этом направлении принадлежит Лобачевскому, напечатавшему в 1829 году в журнале "Казанский вестник" статью "О началах геометрии". Вслед за этим Лобачевский напечатал много других статей и книг, широко раскрывающих содержание открытой им геометрической системы. Я. Бойяи опубликовал свое открытие в 1832 году в виде приложения ("Appendix") к обширному сочинению своего отца. Этот краткий мемуар по достоинству считается одним из замечательнейших произведений мировой математической литературы.
1.6 Янош Больяи
Больяи (Бояи, а также Бойаи) Янош (15.12.1802-27.1.1860)- венгерский математик и военный инженер. Родился в Коложваре (ныне Клуж-Напека, Румыния), Его отец Фаркаш (Вольфганг) Больяи - профессор математики и поэт (9.2.1775-21.11.1856), друг К. Ф. Гаусса.
Фаркаш Больяи строго доказал, что равновеликие многоугольники равно составлены: пытался доказать V постулат Евклида, исходя из предположения, что вокруг любого треугольника можно описать окружность. В 13 лет Больяи владел дифференциальным и интегральным исчислениями. Еще студентом Военно-инженерной академии Больяи вместе со своим другом Сасом начал искать доказательство постулата о параллельных линиях. Сохранившиеся чертежи свидетельствуют, что Больяи уже тогда был на пути к открытию неевклидовой геометрии. По окончании академии младший лейтенант Больяи командируют в небольшую крепость Темешвар. Здесь около 1825г. он пришел к основным положениям неевклидовой геометрии. Обработав свои исследования, Больяи издал их в 1832г. в виде приложения ("Аппендикс") к 1 т. сочинения отца "Опыт введения учащегося юношества в начала математики-элементарной и высшей". "Аппендикс" был издан на русском языке. Это приложение отличается крайней сжатостью и схематичностью, по продуманности каждого слова и предложения принадлежит к числу наиболее совершенных произведений математической литературы.
Открытие Больяи при его жизни не получило признания. В 1837г. в Лейпциге в качестве темы конкурса было предложено разобрать учение о мнимых величинах. Больяи прислал замечательное произведение, предвосхищающее построения У.Р. Гамильтона, однако жюри дало о нем отрицательный отзыв. Неудачи тяжело отразились на психике Больяи. Он интенсивно продолжал научную работу, но ставил перед собой невыполнимые задачи. Попытка строго логического построения геометрии свободной от каких бы то ни было наглядных представлений, содержит отдельные интересные мысли, но в целом была невыполнимой в то время. Отчаяние Больяи особенно возросло, когда он ознакомился с сочинением Н.И. Лобачевского "Геометрические исследования по теории параллельных линий" (1840г.). К. Гаусс в своих письмах отзывался с величайшей похвалой о работах Больяи и Н.И. Лобачевского, однако не дал о них публичного отзыва.
1.7 Геометрия Римана
В своей лекции «О гипотезах, лежащих в основании геометрии», прочитанной в 1854 году, немецкий математик Риман замечает, что в основе всех предшествовавших исследований лежит допущение того, что прямые имеют бесконечную длину, которое является, конечно, крайне естественным. Но что получится, если отбросить это допущение, если, например, вместо него предположить, что прямые - суть линии замкнутые, вроде больших кругов на сфере. Речь идет по сути о различии между бесконечностью и безграничностью; это различие лучше всего можно понять, рассматривая аналогичное соотношение в двумерной области: безграничными являются как обыкновенная плоскость, так и поверхность сферы, но только первая бесконечна, в то время как другая имеет конечное протяжение.
Риман считает пространство лишь неограниченным, но не бесконечным; тогда прямая становится замкнутой линией, на которой точки расположены как на окружности. Если заставить теперь снова, как и прежде, точку P перемещаться по прямой a все время в одном направлении, то она в конце концов снова вернется к исходному месту, а луч AP вообще не будет иметь никакого предельного положения; не существует вообще никакой прямой, проходящей через точку A параллельно прямой a . Таким образом у Римана строится второй вид неевклидовой геометрии в противоположность геометрии Лобачевского.
1.8 Геометрия Лобачевского
В мемуаре «О началах геометрии» (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г.
Он определяет основные понятия геометрии, не зависящие от V постулата, и заметив, что сумма углов прямолинейного треугольника не может быть , как это имеет место у сферических треугольников, Лобачевский заявляет: «Мы видели, что сумма углов прямолинейного треугольника не может быть . Остается предполагать эту сумму или . То и другое может быть принято без всякого противоречия впоследствии, от чего и происходят две Геометрии: одна, употребительная доныне по своей простоте, соглашается со всеми измерениями на самом деле; другая, воображаемая, более общая и потому затруднительная в своих вычислениях, допускает возможность зависимости линий от углов».
Лобачевский указывает, что в «воображаемой геометрии» сумма углов треугольника всегдаи две прямые могут не пересекаться в случае, когдаони образуют с секущей углы, в сумме меньшие . Параллельные прямые определяются как такие, которые не пересекаются, но могут быть получены предельным переходом из пересекающихся. Через каждую точку плоскости проходят две прямые, параллельные данной прямой, лежащей в этой плоскости; эти прямые делят пучок прямых, проходящих через данную точку, на четыре области, в двух из которых проходят прямые, пересекающие данную прямую, а в двух - прямые, которые не пересекают эту прямую и не могут быть получены предельным переходом из пересекающихся - такие прямые называются расходящимися; параллельные прямые разграничивают пресекающие прямые от расходящихся (на рис. условно изображены прямые и , проведенные через точку А параллельно прямой , прямые и , проведенные через точку А и пресекающие прямую , и прямые и , расходящиеся с прямой ). Угол между прямой, проведенной через точку А параллельно прямой , и перпендикуляром, опущенным из А на , Лобачевский называет «углом параллельности» и показывает, что функция , выражающая зависимость этого угла от длины а перпендикуляра, может быть (в современных обозначениях) записана в виде
=2arctg (1)
где q - некоторая постоянная. При а0 угол параллельности всегда острый, причем он стремится к при , постоянная же q может служить на плоскости Лобачевского абсолютной единицей длины, аналогичной абсолютной единицей длины, аналогичной единице угла в евклидовом пространстве. Лобачевский устанавливает также, что расходящиеся прямые обладают общим перпендикуляром и удаляются друг от друга по обе стороны от него, а две параллельные прямые приближаются друг к другу и расстояния точек одной из них от другой стремится к 0 при неограниченном удалении этих точек. Сумма углов треугольника в геометрии Лобачевского всегда меньше , и если - «угловой дефект» треугольника, то есть разность между и суммой его углов, то площадь треугольника S равна
(2)
где q - та же постоянная, что и в формуле (1).
Круг при стремлении его радиуса к бесконечности переходит в системе Лобачевского не в прямую, а в особого рода кривую «предельного круга» - в настоящее время такие кривые называют орициклами. Сфера при тех же обстоятельствах переходит не в плоскость, а в кривую поверхность, которую Лобачевский назвал «предельной сферой», а в настоящее время именуют орисферой. Лобачевский отмечает, что на орисфере имеет место евклидова геометрия, причем роль прямых на ней играют орициклы. Это позволяет Лобачевскому, опираясь на евклидову тригонометрию на орисфере, вывести тригонометрию на плоскости в его геометрической системе. Название «воображаемая геометрия» подчеркивает, что эта геометрия относится к евклидовой, «употребительной», по терминологии Лобачевского, как мнимые числа, «воображаемые», по его терминологии, к действительным.
Лобачевский сразу же поставил вопрос об экспериментальной проверке того, какая геометрия имеет место в реальном мире - «употребительная» или «воображаемая», для чего он решил измерить сумму углов треугольника, образованного двумя диаметрально противоположными положениями Земли на ее орбите и Сириусом и считая один из углов этого треугольника прямым, а другой - равным углу параллельности, Лобачевский нашел, что эта сумма отличается от на разность, меньшую ошибки угломерных инструментов в его время. «После того, - пишет Лобачевский, - можно вообразить, сколько эта разность, на которой основана наша теория параллельных, оправдывает точность всех вычислений обыкновенной геометрии и дозволяет принятые начала рассматривать как бы строго доказанными».
Это объясняет, что под «строгим доказательством теоремы о параллельных» в докладе 1826 г. Лобачевский понимал невозможность установить экспериментальным путем ,какая из двух геометрий имеет место в реальном мире, откуда вытекает, что на практике можно пользоваться «употребительной геометрией», не рискуя впасть в ошибку.
Наиболее полно изложена система Лобачевского в его «Новых началах с полной теорией параллельных» (1835-1838). Изложение геометрии у Лобачевского основывается на чисто топологических свойствах прикосновения и сечения, конгруэнтность тел и равенство отрезков определяются по существу с помощью движения.
В позднейших работах Лобачевский ввел координаты и вычислил из геометрических соображений целый ряд новых определенных интегралов, которым он специально посвятил работу «Применение воображаемой геометрии к некоторым интегралам» (Учен. зап. Казан. ун-та, 1836), многие из которых были включены в дальнейшие справочники.
Изучив теорию вопроса о параллельных прямых я узнала о том какие теории есть еще, т.е. Геометрии отличные от геометрии Евклида. Например, геометрия Н.И.Лобачевского, в его геометрии через точку не лежащую на данной прямой проходит бесконечно много прямых параллельных данной.
Оказалось что его геометрия не только не хуже евклидовой, но в некотором отношении даже совершеннее ее, богаче.
Геометрия Римана, в его геометрии прямые это замкнутые линии, на которых точки расположены как на окружности, только очень большого диаметра. В геометрии Римана не существует вообще никакой прямой , проходящей через данную точку параллельно данной прямой. Это второй вид неевклидовой геометрии.
Янош Больяи пытался доказать V постулат Евклида (аксиома параллельности), сохранившиеся чертежи свидетельствуют, что Больяи уже тогда был на пути к открытию неевклидовой геометрии, но его открытие записанное в «Аппендиксе» не было признано при его жизни.
А.М.Лежандр является автором школьного учебника «Начала геометрии», он переиздавался при жизни автора 14 раз. Объяснялось это тем, что каждый раз он обнаруживал ошибку в доказательстве V постулата. Однако его исследования очень поучительны и вскрывают глубокие связи между V постулатом и другими предложениями.
Глава 2. Методика преподавания темы «Параллельные прямые»
2.1 Параллельные прямые
К понятию о параллельных прямых следует подвести учащихся следующим образом. Учащимся предлагается провести произвольную прямую АВ, отметить на ней две близлежащие точки М и N, и провести через эти точки к прямой АВ перпендикуляры ММ1 и NN1. ставиться вопрос, пересекутся ли эти перпендикуляры, если их продолжить в ту или другую сторону от прямой АВ.
Если на заданный вопрос последует ответ, что прямые не пересекутся, а это учащиеся чувствуют интуитивно, или, наоборот, будет дан ответ, что прямые пересекутся, необходимо указать учащимся, что каждое из сделанных ими утверждений должно быть доказано, т.е. обосновано ссылками на известные им аксиомы и теоремы.
Доказательство: имеем ММ1 перпендикулярно АВ, NN1 перпендикулярно АВ. Докажем, что перпендикуляры ММ1 и NN1, проведенные к одной и той же прямой АВ, не могут пересечься. Предположим противное, а именно - что перпендикуляры ММ1 и NN1 пересекутся в некоторой точке О, тогда получиться треугольник МОN, в котором сумма внутренних углов 1 и 2, равна двум прямым: 1+2=180?, что невозможно, так как сумма двух углов треугольника всегда меньше 180?. Отсюда следует, что принятое допущение, что перпендикуляры ММ1 и NN1 при своем продолжении пересекутся в некоторой точке О, неверно. Итак, два перпендикуляра к одной и той же прямой не пересекутся, сколько бы их не продолжать.
После такого разбора учащимся указывается, что на плоскости можно расположить две прямые так, что они никогда не пересекутся, и дается определение: прямые, которые расположены в одной плоскости и не пересекаются, называются параллельными.
Возвращаясь затем к полученному выше выводу о взаимном положении двух перпендикуляров к одной и той же прямой, преподаватель отмечает, что этот вывод можно формулировать в виде теоремы: две прямые перпендикулярные к третьей, параллельны.
Вводится знак для обозначения параллельности двух прямых: АВ¦CD.
Преподаватель должен подчеркнуть, что необходимым условием для параллельности двух прямых является то, что прямые должны лежать в одной плоскости. Это указание должно быть выявлено в определении, а потому определение параллельных прямых без слов « которые расположены в одной плоскости» является неполным.
Следует использовать модель куба для показа параллельных и непараллельных прямы.
Так, ребра куба АВ и А1D1 не пересекаются: они лежат в разных плоскостях, поясняется, что такие прямые, в отличие от прямых параллельных, называются скрещивающимися.
Ребра же куба АВ и А1В1, АА1 и ВВ1, ВВ1 и СС1 также не пересекаются , однако они попарно расположены в одной плоскости, они параллельны.
Теорема о двух перпендикулярах на плоскости к одной и той же прямой является одним из признаков параллельных прямых. Необходимо показать учащимся ее практическое приложение, для чего следует решить задачу: На плоскости даны две точки А и В. Провести через эти точки две параллельные прямые.
Построение. Через точки А и В Проводится прямая МN, и в этих же точках строится к прямой МN перпендикуляры АС и ВD (АС¦BD). Продолжая оба перпендикуляра по другую сторону от МN, имеем: СС1¦DD1. Это одно и многочисленных решений, через точки А и В можно провести бесконечно много пар параллельных прямых. Действительно, проводим на плоскости ряд произвольных прямых и к ним через точки А и В перпендикуляры. Получаем, что в каждой из точек А и В пучок прямых. При этом каждой прямой пучка с центром в точке А соответствует определенная прямая, ей параллельная, принадлежащая пучку с центром в точке В.
Подобные документы
Психолого-педагогические аспекты постановки дидактического момента "Устная работа" с учащимися основной школы. Развитие пространственного мышления учащихся основной школы при изучение геометрического материала. Результаты экспериментальной проверки.
дипломная работа [476,0 K], добавлен 01.07.2015Составление и обзор психолого-педагогической характеристики учащихся 8-9 классов основной школы. Определение основных психолого-педагогических и методических особенностей преподавания элементов теории графов на факультативном курсе в основной школе.
дипломная работа [2,0 M], добавлен 13.12.2017Этапы работы с площадями в основной школе и анализ учебников. Основные дидактические функции задач по теме "Площади фигур" и методика их реализации в процессе обучения в 5-9 классах. Опытная проверка разработанных материалов и оценка результатов.
дипломная работа [1,8 M], добавлен 05.11.2011Сущность понятия и классификации умений в науке, основные группы предметно-исторических умений. Процесс формирования умений в процессе обучения истории. Методики работы с историческими источниками в процессе обучения истории учащихся основной школы.
курсовая работа [62,8 K], добавлен 23.01.2012Характеристика свойств параллельных прямых и видов треугольников. Формулировка и методы доказывания теоремы о сумме внутренних углов в треугольнике. Отличительные черты видов треугольников по углам и по сторонам. Определение суммы односторонних углов.
презентация [340,7 K], добавлен 09.11.2010Теоретические основы использования метода координат в основной школе. Суть метода координат. Методические основы изучения метода координат. Этапы решения задач методом координат. Задачи, обучающие координатному методу.
дипломная работа [1,1 M], добавлен 08.08.2007Методика изучения вероятностно-статистической (стохастической) линии в курсе математики основной школы. Анализ восприятия материала учащимися: степень заинтересованности; уровень доступности; трудности при изучении этого материала; качество усвоения.
дипломная работа [121,3 K], добавлен 28.05.2008Анализ психолого-педагогической литературы. Особенности восприятия формы детьми пятого года жизни. Содержание различных программ по проблеме логико-математического развития. Оптимальные методы ознакомления дошкольника с геометрическими фигурами.
реферат [68,4 K], добавлен 26.02.2012История возникновения и развития геометрических величин. Роль и место величин в процессе обучения. Методика изучения длин, величин углов, площадей и объемов фигур в курсе геометрии средней школы. Разработка тестов и заданий для самостоятельной работы.
курсовая работа [93,5 K], добавлен 25.11.2010Задачи развития информационных технологий обучения учащихся основной и старшей школы, отраженные в проекте государственного образовательного стандарта. Обоснование необходимости и принципы включения информационных технологий в процесс обучения геометрии.
статья [73,1 K], добавлен 09.02.2014