Определение моментов инерции тел методом крутильных колебаний

Методы определения моментов инерции тел правильной геометрической формы. Принципиальная схема установки. Момент инерции оси. Основное уравнение динамики вращательного движения. Измерение полных колебаний с эталонным телом. Расчёт погрешностей измерений.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 01.10.2015
Размер файла 65,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет путей сообщения РФ (МИИТ)

Кафедра «Физика-2»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

1. Цель работы

Определение моментов инерции тел правильной геометрической формы

2. Принципиальная схема установки

рис 1 - Устройство прибора для измерения крутильных колебаний

Для измерения момента инерции в данной лабораторной работе используются крутильные колебания изображенного на рисунке устройства, состоящего из диска 1 и лежащих на нем одного или нескольких тел 2. В работе используется эталонное тело (ЭТ) с известным моментом инерции. Диск расположен на станине 3, имеющей винты 4 для корректировки горизонтального положения плоскости диска. Пружина 5 служит для возвращения диска в положение равновесия и создания колебательного движения относительно вертикальной оси (рис.1).

3. Основные теоретические положения к данной работе

Инертные свойства тела при вращении определяются не только массой тела, но и расположением отдельных частей тела по отношению к оси вращения. Для характеристики этих свойств вводится понятие момента инерции.

Абсолютно твердое тело можно рассматривать как систему из материальных точек с неизменными расстояниями между ними.

Момент инерции Ii материальной точки относительно некоторой оси вращения определяется как произведение ее массы mi; на квадрат расстояния ri, до оси вращения

Момент инерции твердого тела равен сумме моментов инерции отдельных его частей - материальных точек

.

Если абсолютно твердое тело имеет форму тела вращения относительно оси, проходящей через его центр инерции, то выражение для момента инерции принимает более простой вид:

I kmR2, (1)

где m и R - масса и радиус тела соответственно;

k - коэффициент, зависящий от формы тела.

Для обруча и тонкостенного цилиндра k 1, для сплошного цилиндра и диска k =1/2, для шара k = 2/5.

Если ось вращения не проходит через центр инерции тела, то для вычисления его момента инерции пользуются теоремой Штейнера:

Момент инерции I относительно произвольной оси равен сумме момента инерции Iо относительно оси, проходящей через центр масс тела параллельно данной, и произведения массы тела на квадрат расстояния а между осями

(2)

Момент инерции системы тел относительно некоторой оси равен сумме моментов инерции относительно этой оси всех тел, входящих в систему:

I I1 I2 I3 ... IN. (3)

Момент инерции тела как характеристика его инертных свойств входит в уравнения динамики вращательного движения. При вращении твердого тела относительно неподвижной оси основное уравнение динамики вращательного движения можно записать в виде:

M I, (4)

где М - проекция результирующего момента всех внешних сил на ось вращения; - угловое ускорение.

Так как угловое ускорение может быть записано как вторая производная по времени от угла поворота:

то уравнение (4) можно представить в виде

.

При отклонении диска на некоторый угол (в пределах упругой деформации пружины) со стороны пружины на диск действует возвращающая сила, проекция момента которой пропорциональна углу отклонения:

М b, (6)

где b -- упругая постоянная пружины.

Если пренебречь влиянием силы трения, то уравнение движения диска на основании формул (5) и (6) примет вид

,

где I - момент инерции диска с лежащими на нем грузами.

Решение этого уравнения имеет вид

то есть угол отклонения диска от положения равновесия изменяется по гармоническому закону и вся система совершает гармонические колебания с амплитудой 0 и круговой частотой . Величину (t ) называют фазой колебания, - начальной фазой, определяющей угол отклонения при t 0.

Найдя первую и вторую производные угла по времени t и подставив их в уравнение (7), получим

I 2 0 cos (t ) b 0 cos (t ),

откуда найдем

,

а затем формулу для периода колебаний T:

Если колеблется только диск, то его период колебаний

, (8)

где Iд - момент инерции диска без грузов.

Если на диске лежит эталонное тело, то период колебаний системы TЭТ, в этом случае можно записать аналогично:

. (9)

Используя выражения (8) и (9), получим:

.

Если диск колеблется вместе с телом, момент инерции которого Ix требуется определить, то период его колебаний

,

откуда

Ix .

Используя полученные выражения для b и Iд, получим окончательную формулу для определения момента инерции исследуемого тела:

4. Таблицы и графики Графики выполняются на миллиметровой бумаге или в компьютерном виде с использованием программ построения графиков. Необходимо соблюдать правила построения графиков..

Таблица 1 - измерения полных колебаний с эталонным телом

опыта

Число колебаний, n

Колебания диска без грузов

Колебания диска с эталонным телом

t, c

T0, c

t, c

TЭТ, c

1

2

3

4

5

6

4,4

4,8

5,8

1,1

0,96

0,96

5,3

5,8

7,7

1,32

1,16

1,28

Средняя величина

__________

________

1,01

_______

1,25

Таблица 2 - измерения полных колебаний с исследуемым телом

Номер тела

Число колебаний n

t, c

Tх, c

Ix, кгм2

1

4

5,7

1,42

2,28

5

6,8

1,36

2,06

6

8

1,33

1,86

2

4

4,2

1,05

0,21

5

5,3

1,06

0,25

6

6,5

1,16

0,81

Таблица 3 - измерения полных колебаний с эталонным и с исследуемым телом с учетом форм тел

Номер тела

Форма тела

Масса тела m, кг

Радиус тела R, м

Ix, кгм2 по формуле (1)

Ix ср, кгм2 из табл.2

1

2

Цилиндр

Цилиндр

1,258

0,5

4,0=

4,0

0,028

0,45

2,05

0,42

Таблица 4 - измерения полных колебаний с эталонным и с исследуемым телом

№ опыта

n

t, c

T, c

Момент инерции двух тел по формуле (10) Ix кгм2

1

2

3

4

5

6

5,5

6,5

8,2

1,38

1,3

1,36

2,20

1,68

2,07

Среднее значение

_____

________

1,35

0,002

Момент инерции двух тел:

Ix Ix1 ср Ix2 ср

2,48

Таблица 5 - измерения полных колебаний с эталонным телом, находящимся на некотором расстоянии от центра диска

№ опыта

n

t, c

T, c

Момент инерции по формуле (10), Ix кгм2

1

2

3

4

5

6

5,4

6,8

8,3

1,35

1,36

1,38

0,0213

0,002

0,0024

Среднее значение

____

___

1,36

0,002

Момент инерции по формуле (2):

I = …..

5,625

5. Расчёт погрешностей измерений

T .

T .

Tх1 .

Tх2 .

6. Окончательные результаты:

инерция тело ось колебание

2,06100,05

0,42100,07

Размещено на Allbest.ru


Подобные документы

  • Определение момента инерции тела относительно оси, проходящей через центр массы тела. Расчет инерции ненагруженной платформы. Проверка теоремы Штейнера. Экспериментальное определение момента энерции методом крутильных колебаний, оценка погрешностей.

    лабораторная работа [39,3 K], добавлен 01.10.2014

  • Экспериментальное изучение динамики вращательного движения твердого тела и определение на этой основе его момента инерции. Расчет моментов инерции маятника и грузов на стержне маятника. Схема установки для определения момента инерции, ее параметры.

    лабораторная работа [203,7 K], добавлен 24.10.2013

  • Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.

    реферат [287,6 K], добавлен 18.07.2013

  • Определение момента инерции тела относительно оси, проходящей через центр его масс, экспериментальная проверка аддитивности момента инерции и теоремы Штейнера методом трифилярного подвеса. Момент инерции тела как мера инерции при вращательном движении.

    лабораторная работа [157,2 K], добавлен 23.01.2011

  • Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.

    контрольная работа [160,2 K], добавлен 17.11.2010

  • Определение скорости пули методом физического маятника. Объём и плотности тела, вычисление погрешностей. Определение момента инерции и проверка теоремы Штейнера методом крутильных колебаний. Модуль сдвига при помощи крутильных колебаний.

    лабораторная работа [125,8 K], добавлен 27.02.2011

  • Определение положения центра тяжести, главных центральных осей инерции и величины главных моментов инерции. Вычисление осевых и центробежных моментов инерции относительно центральных осей. Построение круга инерции и нахождение направлений главных осей.

    контрольная работа [298,4 K], добавлен 07.11.2013

  • Определение коэффициентов трения качения и скольжения с помощью наклонного маятника. Изучение вращательного движения твердого тела. Сравнение измеренных и вычисленных моментов инерции. Определение момента инерции и проверка теоремы Гюйгенса–Штейнера.

    лабораторная работа [456,5 K], добавлен 17.12.2010

  • Главные оси инерции. Вычисление момента инерции однородного стержня относительно оси, проходящей через центр масс. Вычисление момента инерции тонкого диска или цилиндра относительно геометрической оси. Теорема Штейнера и главные моменты инерции.

    лекция [718,0 K], добавлен 21.03.2014

  • Изучение зависимости момента инерции от расстояния масс от оси вращения. Момент инерции сплошного цилиндра, полого цилиндра, материальной точки, шара, тонкого стержня, вращающегося тела. Проверка теоремы Штейнера. Абсолютные погрешности прямых измерений.

    лабораторная работа [143,8 K], добавлен 08.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.