Использование численных методов при решении инженерных задач
Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.09.2011 |
Размер файла | 1,3 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение графика функции. Поиск корней уравнения методом половинного деления. Определение минимума функции методом перебора и значения аргумента. Вычисление определенного интеграла на заданном отрезке с использованием метода правых прямоугольников.
контрольная работа [316,1 K], добавлен 13.11.2014Методика и основные этапы процесса поиска уравнения по методу половинного деления, его сущность и содержание, анализ результатов. Порядок вычисления экстремумов функции методом перебора. Расчет определенного интеграла по методу правых прямоугольников.
контрольная работа [200,9 K], добавлен 20.01.2014Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа [3,0 M], добавлен 21.05.2013Математическое описание, алгоритм и программа вычисления определенного интеграла методом трапеций. Расчет n-значений исследуемой функции и вывод их в виде таблицы. Технические и программные средства. Входные и выходные данные, функциональное назначение.
курсовая работа [21,0 K], добавлен 03.01.2010Решение уравнения методом половинного деления. Программа в Matlab для уравнения (x-2)cos(x)=1. Решение нелинейных уравнений методом Ньютона. Интерполяция заданной функции. Решение системы линейных алгебраических и обыкновенных дифференциальных уравнений.
курсовая работа [1,4 M], добавлен 15.08.2012Метод хорд решения нелинейных уравнений. Вычисление интеграла методом Симпсона. Процесс численного решения уравнения. Окно программы расчета корней уравнения методом хорд. Алгоритм вычисления интеграла в виде блок-схемы. Выбор алгоритма для вычислений.
курсовая работа [832,6 K], добавлен 24.07.2012Применение объектно-ориентированного программирования для написания нескольких модулей программы. Вычисление алгебраического уравнения методом половинного деления. Применение метода Эйлера в теории численных методов общих дифференциальных уравнений.
курсовая работа [398,1 K], добавлен 26.02.2015Тестирование модуля отыскания корня уравнения методом половинного деления. Схема алгоритма тестирующей программы. Численное интегрирование по методу Симпсона с оценкой погрешности по правилу Рунге. Проверка условий сходимости методов с помощью MathCAD.
курсовая работа [1,1 M], добавлен 04.02.2011Решение нелинейного уравнения: отделение корней и уточнение корня по методу хорда. Численное интегрирование: метод входящих прямоугольников. Вычисление площади криволинейной трапеции с разбивками. Решение примера методом интегрирования по частям.
курсовая работа [197,9 K], добавлен 20.01.2009Обзор элементов языка программирования Паскаль, решение задач путем использования численных методов на компьютере. Алгоритм нахождения интеграла функции с помощью метода прямоугольников. Комплекс технических средств, необходимых для решения задачи.
контрольная работа [36,6 K], добавлен 07.06.2010