Корреляционно-регрессионный анализ
Построение корреляционного поля зависимости между y и x1, определение формы и направления связи. Построение двухфакторного уравнения регрессии y, x1, x2, оценка показателей тесноты связи. Оценка модели через F-критерий Фишера и t-критерий Стьюдента.
Рубрика | Экономико-математическое моделирование |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 23.01.2011 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Имени ЯРОСЛАВА МУДРОГО
ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ
Кафедра: Статистики и экономико-математических методов
Отчет
По дисциплине статистика
Лабораторная работа по теме:
«Корреляционно регрессионный анализ»
Вариант 2
Выполнила студентка гр.8431
Гарбузова Ю.
Егарева Т. Н
Ерошенко Н.Н
Проверила
Фетисова Г.В
Великий Новгород
2010
Корреляционный анализ изучает стохастические связи между случайными величинами в экономике. Метод корреляции применяется для того, чтобы при сложном взаимодействии посторонних влияний выявить зависимость между результатом и факторами в том случае, если посторонние факторы не изменялись и не искажали основную зависимость. При этом число наблюдений должно быть достаточно велико, так как малое число наблюдений не позволяет обнаружить закономерность связи. Укрупненно можно рекомендовать: число наблюдений равно восьмикратному числу факторов, включенных в модель.
Задание:
1.) Построить корреляционное поле зависимости между y и x1. Сделать вывод относительно формы и направления связи.
2.) Построить уравнение регрессии между у и х1 (линейная, степенная, логарифмическая). Оценить каждую функцию через F-критерий, , ошибку аппроксимации.
3.) Построить корреляционное поле зависимости между y и x2. Сделать вывод относительно формы и направления связи.
4.) Построить двухфакторное уравнение регрессии между y, x1,x2. Оценить показатели тесноты связи.
5.) Оценить модель через F-критерий Фишера.
6.) Оценить параметры через t-критерий Стьюдента.
Исходные данные :
Уравнение регрессии между у и х1 (линейная):
F расч = (0,7451/(1-0,7451))*((25-1-1)/1) = 67,232
Уравнение регрессии между у и х1 (логарифмическая):
F расч = (0,4445/(1-0,4445))*((25-1-1)/1) = 18,404
Уравнение регрессии между у и х1 (степенная):
F расч = (0,4284/(1-0,4284))*((25-1-1)/1) = 0,019
линейная |
F расч |
67,23146332 |
|
логарифмическая |
F расч |
18,40414041 |
|
степенная |
F расч |
0,019459742 |
Е1 |
53,9 |
|
Е2 |
72,5 |
|
Е3 |
48,2 |
Уравнение регрессии между у и х2 (линейная):
Уравнение регрессии между у и х2(логарифмическая):
Уравнение регрессии между у и х2(степенная):
E1 |
2171 |
|
E2 |
166 |
|
E3 |
165 |
С помощью пакета анализа
Y=0,148+0,008*x1+0,019*x2 |
r yx1 |
0,863 |
|
ryx2 |
0,005 |
|
rx1x2 |
0,395 |
|
r yx1x2 |
0,937 |
|
ryx2x1 |
-0,723 |
|
rx1x2y |
0,772 |
|
R yx1x2 |
0,937 |
|
R^2 yx1x2 |
0,878 |
|
сигма ост |
0,003 |
|
Fрасч |
72,08 |
|
Fтабл |
2,086 |
|
стьюдента |
34,40 |
Линейный коэффициент корреляции может быть определен по формуле:
Или
.
Он изменяется в диапазоне от -1 до +1. положительный коэффициент характеризует прямую связь, отрицательный - обратную. Связь между факторным и результативным признаком можно признать тесной, если r>0,7.
Индекс корреляции может рассчитываться по формуле:
,
Индекс корреляции изменяется от 0 до 1.
оценка существенности связи на основе t - критерия Стьюдента (при оценке параметров) или F - критерия Фишера (при оценке уравнения регрессии).
для линейной формы связи,
для криволинейной формы связи,
где k - число параметров.
Нахождение аппроксимирующего уравнения, для чего определяется средняя ошибка аппроксимации
.
F-критерия Фишера:
Подобные документы
Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.
контрольная работа [34,7 K], добавлен 14.11.2010Построение поля корреляции, оценка тесноты связи с помощью показателей корреляции и детерминации, адекватности линейной модели. Статистическая надёжность нелинейных моделей по критерию Фишера. Модель сезонных колебаний и расчёт прогнозных значений.
практическая работа [145,7 K], добавлен 13.05.2014Построение описательной экономической модели. Матрица корреляций между исходными статистическими признаками. Оценка параметров модели. Определение и графическое изображение регрессионной зависимости между показателями. Оценка адекватности модели.
контрольная работа [215,8 K], добавлен 13.10.2011Расчёт параметров линейного уравнения регрессии. Оценка регрессионного уравнения через среднюю ошибку аппроксимации, F-критерий Фишера, t-критерий Стьюдента. Анализ корреляционной матрицы. Расчёт коэффициентов множественной детерминации и корреляции.
контрольная работа [241,8 K], добавлен 29.08.2013Контроль информации на наличие выбросов в массиве. Описательная статистика, вывод итогов. Матрица коэффициентов парной корреляции. Количественный критерий оценки тесноты связи. Регрессионный анализ статистических данных. Анализ качества модели регрессии.
контрольная работа [5,7 M], добавлен 14.12.2011Понятие корреляционной связи. Связь между качественными признаками на основе таблиц сопряженности. Показатели тесноты связи между двумя количественными признаками. Определение коэффициентов уравнения линейной регрессии методом наименьших квадратов.
контрольная работа [418,7 K], добавлен 22.09.2010Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.
контрольная работа [136,3 K], добавлен 25.09.2014Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.
курсовая работа [1,1 M], добавлен 07.08.2011Эконометрика как одна из базовых дисциплин экономического образования во всем мире. Прогноз социально-экономических показателей, характеризующих состояние и развитие анализируемой системы. Понятие и построение модели парной регрессии и корреляции.
контрольная работа [633,2 K], добавлен 10.12.2013Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016