Корреляционно-регрессионный анализ

Построение корреляционного поля зависимости между y и x1, определение формы и направления связи. Построение двухфакторного уравнения регрессии y, x1, x2, оценка показателей тесноты связи. Оценка модели через F-критерий Фишера и t-критерий Стьюдента.

Рубрика Экономико-математическое моделирование
Вид лабораторная работа
Язык русский
Дата добавления 23.01.2011
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Имени ЯРОСЛАВА МУДРОГО

ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ

Кафедра: Статистики и экономико-математических методов

Отчет

По дисциплине статистика

Лабораторная работа по теме:

«Корреляционно регрессионный анализ»

Вариант 2

Выполнила студентка гр.8431

Гарбузова Ю.

Егарева Т. Н

Ерошенко Н.Н

Проверила

Фетисова Г.В

Великий Новгород

2010

Корреляционный анализ изучает стохастические связи между случайными величинами в экономике. Метод корреляции применяется для того, чтобы при сложном взаимодействии посторонних влияний выявить зависимость между результатом и факторами в том случае, если посторонние факторы не изменялись и не искажали основную зависимость. При этом число наблюдений должно быть достаточно велико, так как малое число наблюдений не позволяет обнаружить закономерность связи. Укрупненно можно рекомендовать: число наблюдений равно восьмикратному числу факторов, включенных в модель.

Задание:

1.) Построить корреляционное поле зависимости между y и x1. Сделать вывод относительно формы и направления связи.

2.) Построить уравнение регрессии между у и х1 (линейная, степенная, логарифмическая). Оценить каждую функцию через F-критерий, , ошибку аппроксимации.

3.) Построить корреляционное поле зависимости между y и x2. Сделать вывод относительно формы и направления связи.

4.) Построить двухфакторное уравнение регрессии между y, x1,x2. Оценить показатели тесноты связи.

5.) Оценить модель через F-критерий Фишера.

6.) Оценить параметры через t-критерий Стьюдента.

Исходные данные :

Уравнение регрессии между у и х1 (линейная):

F расч = (0,7451/(1-0,7451))*((25-1-1)/1) = 67,232

Уравнение регрессии между у и х1 (логарифмическая):

F расч = (0,4445/(1-0,4445))*((25-1-1)/1) = 18,404

Уравнение регрессии между у и х1 (степенная):

F расч = (0,4284/(1-0,4284))*((25-1-1)/1) = 0,019

линейная

F расч

67,23146332

логарифмическая

F расч

18,40414041

степенная

F расч

0,019459742

Е1

53,9

Е2

72,5

Е3

48,2

Уравнение регрессии между у и х2 (линейная):

Уравнение регрессии между у и х2(логарифмическая):

Уравнение регрессии между у и х2(степенная):

E1

2171

E2

166

E3

165

С помощью пакета анализа

Y=0,148+0,008*x1+0,019*x2

r yx1

0,863

ryx2

0,005

rx1x2

0,395

r yx1x2

0,937

ryx2x1

-0,723

rx1x2y

0,772

R yx1x2

0,937

R^2 yx1x2

0,878

сигма ост

0,003

Fрасч

72,08

Fтабл

2,086

стьюдента

34,40

Линейный коэффициент корреляции может быть определен по формуле:

Или

.

Он изменяется в диапазоне от -1 до +1. положительный коэффициент характеризует прямую связь, отрицательный - обратную. Связь между факторным и результативным признаком можно признать тесной, если r>0,7.

Индекс корреляции может рассчитываться по формуле:

,

Индекс корреляции изменяется от 0 до 1.

оценка существенности связи на основе t - критерия Стьюдента (при оценке параметров) или F - критерия Фишера (при оценке уравнения регрессии).

для линейной формы связи,

для криволинейной формы связи,

где k - число параметров.

Нахождение аппроксимирующего уравнения, для чего определяется средняя ошибка аппроксимации

.

F-критерия Фишера:


Подобные документы

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.

    контрольная работа [34,7 K], добавлен 14.11.2010

  • Построение поля корреляции, оценка тесноты связи с помощью показателей корреляции и детерминации, адекватности линейной модели. Статистическая надёжность нелинейных моделей по критерию Фишера. Модель сезонных колебаний и расчёт прогнозных значений.

    практическая работа [145,7 K], добавлен 13.05.2014

  • Построение описательной экономической модели. Матрица корреляций между исходными статистическими признаками. Оценка параметров модели. Определение и графическое изображение регрессионной зависимости между показателями. Оценка адекватности модели.

    контрольная работа [215,8 K], добавлен 13.10.2011

  • Расчёт параметров линейного уравнения регрессии. Оценка регрессионного уравнения через среднюю ошибку аппроксимации, F-критерий Фишера, t-критерий Стьюдента. Анализ корреляционной матрицы. Расчёт коэффициентов множественной детерминации и корреляции.

    контрольная работа [241,8 K], добавлен 29.08.2013

  • Контроль информации на наличие выбросов в массиве. Описательная статистика, вывод итогов. Матрица коэффициентов парной корреляции. Количественный критерий оценки тесноты связи. Регрессионный анализ статистических данных. Анализ качества модели регрессии.

    контрольная работа [5,7 M], добавлен 14.12.2011

  • Понятие корреляционной связи. Связь между качественными признаками на основе таблиц сопряженности. Показатели тесноты связи между двумя количественными признаками. Определение коэффициентов уравнения линейной регрессии методом наименьших квадратов.

    контрольная работа [418,7 K], добавлен 22.09.2010

  • Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.

    контрольная работа [136,3 K], добавлен 25.09.2014

  • Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.

    курсовая работа [1,1 M], добавлен 07.08.2011

  • Эконометрика как одна из базовых дисциплин экономического образования во всем мире. Прогноз социально-экономических показателей, характеризующих состояние и развитие анализируемой системы. Понятие и построение модели парной регрессии и корреляции.

    контрольная работа [633,2 K], добавлен 10.12.2013

  • Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.

    контрольная работа [71,7 K], добавлен 17.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.